PHP利用二叉堆实现TopK-算法的方法详解
前言
在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证 内存和速度的效率,我们可能第一个想法就是利用排序,然后截取前10或前100,而排序对于量不是特别大的时候没有任何问题,但只要量特别大是根本不可能 完成这个任务的,比如在一个数组或者文本文件里有几亿个数,这样是根本无法全部读入内存的,所以利用排序解决这个问题并不是最好的,所以我们这里就用 php去实现一个小顶堆来解决这个问题.
二叉堆
二叉堆是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树,二叉堆有两种,最大堆 和 最小堆,最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值
小顶堆-(图片来自网络)
二叉堆一般用数组来表示(看上图),例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2,因此,第0个位置的子节点在1和2,1的子节点在3和4,以此类推,这种存储方式便於寻找父节点和子节点。
具体概念问题这里就不在多说了,如果对二叉堆有疑问的可以在好好了解下这个数据结构,下面我们就针对上述topN问题来用php代码实现并解决,为了看出区别这里先用排序的方式去实现下看下效果如何。
利用快速排序算法来实现 TopN
//为了测试运行内存调大一点
ini_set('memory_limit', '2024M'); //实现一个快速排序函数
function quick_sort(array $array){
$length = count($array);
$left_array = array();
$right_array = array();
if($length <= 1){
return $array;
}
$key = $array[0];
for($i=1;$i<$length;$i++){
if($array[$i] > $key){
$right_array[] = $array[$i];
}else{
$left_array[] = $array[$i];
}
}
$left_array = quick_sort($left_array);
$right_array = quick_sort($right_array);
return array_merge($right_array,array($key),$left_array);
} //构造500w不重复数
for($i=0;$i<5000000;$i++){
$numArr[] = $i;
}
//打乱它们
shuffle($numArr); //现在我们从里面找到top10最大的数
var_dump(time());
print_r(array_slice(quick_sort($all),0,10));
var_dump(time());
运行之后结果
可以看到上面打印出了top10的结果,并输出了下运行时间,大概99s左右,但这只是500w个数且全部能装入内存的情况,如果我们有一个文件里面有5kw或5亿个数,肯定就会有些问题了.
利用二叉堆算法来实现 TopN
实现流程是:
1、先读取10个或100个数到数组里面,这就是我们的topN数.
2、调用生成小顶堆函数,把这个数组生成一个小顶堆结构,这个时候堆顶一定是最小的.
3、从文件或者数组依次遍历剩余的所有数.
4、每遍历出来一个则跟堆顶的元素进行大小比较,如果小于堆顶元素则抛弃,如果大于堆顶元素则替换之.
5、跟堆顶元素替换完毕之后,在调用生成小顶堆函数继续生成小顶堆,因为需要再找出来一个最小的.
6、重复以上4~5步骤,这样当全部遍历完毕之后,我们这个小顶堆里面的就是最大的topN,因为我们的小顶堆永远都是排除最小的留下最大的,而且这个调整小顶堆速度也很快,只是相对调整下,只要保证根节点小于左右节点就可以.
7、算法复杂度的话按top10最坏的情况下,就是每遍历一个数,如果跟堆顶进行替换,需要调整10次的情况,也要比排序速度快,而且也不是把所有的内容全部读入内存,可以理解成就是一次线性遍历.
//生成小顶堆函数
function Heap(&$arr,$idx){
$left = ($idx << 1) + 1;
$right = ($idx << 1) + 2; if (!$arr[$left]){
return;
} if($arr[$right] && $arr[$right] < $arr[$left]){
$l = $right;
}else{
$l = $left;
} if ($arr[$idx] > $arr[$l]){
$tmp = $arr[$idx];
$arr[$idx] = $arr[$l];
$arr[$l] = $tmp;
Heap($arr,$l);
}
} //这里为了保证跟上面一致,也构造500w不重复数
/*
当然这个数据集并不一定全放在内存,也可以在
文件里面,因为我们并不是全部加载到内存去进
行排序
*/
for($i=0;$i<5000000;$i++){
$numArr[] = $i;
}
//打乱它们
shuffle($numArr); //先取出10个到数组
$topArr = array_slice($numArr,0,10); //获取最后一个有子节点的索引位置
//因为在构造小顶堆的时候是从最后一个有左或右节点的位置
//开始从下往上不断的进行移动构造(具体可看上面的图去理解)
$idx = floor(count($topArr) / 2) - 1; //生成小顶堆
for($i=$idx;$i>=0;$i--){
Heap($topArr,$i);
} var_dump(time());
//这里可以看到,就是开始遍历剩下的所有元素
for($i = count($topArr); $i < count($numArr); $i++){
//每遍历一个则跟堆顶元素进行比较大小
if ($numArr[$i] > $topArr[0]){
//如果大于堆顶元素则替换
$topArr[0] = $numArr[$i];
/*
重新调用生成小顶堆函数进行维护,只不过这次是从堆顶
的索引位置开始自上往下进行维护,因为我们只是把堆顶
的元素给替换掉了而其余的还是按照根节点小于左右节点
的顺序摆放这也就是我们上面说的,只是相对调整下,并
不是全部调整一遍
*/
Heap($topArr,0);
}
}
var_dump(time());
运行之后结果
可以看到最终的结果也是top10,只不过时间只用了1s左右,而且无论是内存还是时间效率都满足我们的要求,而且跟排序比最好的一点就是不用把所
有的数据集都读如到内存里面来,因为我们不需要排序,而上面是为了演示,所以直接在内存构造了500w元素,然而我们可以把这个全部转移到文件里面去,然
后一行一行读取进行比较,因为我们这个数据结构的核心点就是线性遍历跟内存里面很小的小顶堆结构进行比较,最终得到TopN.
总结
最后想说的就是 算法+数据结构 真的非常重要,一个好的算法可以使我们的效率大大提高。好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。
原文链接:http://www.jianshu.com/p/df71c71cdc57
PHP利用二叉堆实现TopK-算法的方法详解的更多相关文章
- 利用C#实现AOP常见的几种方法详解
利用C#实现AOP常见的几种方法详解 AOP面向切面编程(Aspect Oriented Programming) 是通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术. 下面这篇文章主要 ...
- 【数据结构与算法Python版学习笔记】树——利用二叉堆实现优先级队列
概念 队列有一个重要的变体,叫作优先级队列. 和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的. 优先级最高的元素在最前,优先级最低的元素在最后. 实现优先级队列的经典方法是使 ...
- java多线程并发(二)--线程的生命周期及方法详解
上篇随笔介绍了线程的相关基础知识以及新启线程的几种方法,本片将继续介绍线程的生命周期及方法详解. 一.线程的生命周期 在Thread代码中,线程的状态被分为6种 public enum State { ...
- PHP-利用二叉堆实现TopK-算法
介绍 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证内存和速度的效率,我们可能第一个想法就是利用排序,然后截 ...
- Java实现的二叉堆以及堆排序详解
一.前言 二叉堆是一个特殊的堆,其本质是一棵完全二叉树,可用数组来存储数据,如果根节点在数组的下标位置为1,那么当前节点n的左子节点为2n,有子节点在数组中的下标位置为2n+1.二叉堆类型分为最大堆( ...
- 最短路径——Dijkstra算法以及二叉堆优化(含证明)
一般最短路径算法习惯性的分为两种:单源最短路径算法和全顶点之间最短路径.前者是计算出从一个点出发,到达所有其余可到达顶点的距离.后者是计算出图中所有点之间的路径距离. 单源最短路径 Dijkstra算 ...
- 《Algorithms算法》笔记:优先队列(2)——二叉堆
二叉堆 1 二叉堆的定义 堆是一个完全二叉树结构(除了最底下一层,其他层全是完全平衡的),如果每个结点都大于它的两个孩子,那么这个堆是有序的. 二叉堆是一组能够用堆有序的完全二叉树排序的元素,并在数组 ...
- C# 最大二叉堆算法
C#练习二叉堆算法. namespace 算法 { /// <summary> /// 最大堆 /// </summary> /// <typeparam name=&q ...
- 图论——Dijkstra+prim算法涉及到的优先队列(二叉堆)
[0]README 0.1)为什么有这篇文章?因为 Dijkstra算法的优先队列实现 涉及到了一种新的数据结构,即优先队列(二叉堆)的操作需要更改以适应这种新的数据结构,我们暂且吧它定义为Dista ...
随机推荐
- SpringMVC源码阅读:异常解析器
1.前言 SpringMVC是目前J2EE平台的主流Web框架,不熟悉的园友可以看SpringMVC源码阅读入门,它交代了SpringMVC的基础知识和源码阅读的技巧 本文将通过源码(基于Spring ...
- java之Lombok
Lombok是一个可以通过简单的注解形式来帮助我们简化消除一些必须有但显得很臃肿的Java代码的工具,通过使用对应的注解,可以在编译源码的时候生成对应的方法 pom依赖: <dependency ...
- AngularJS内建服务以及自定义服务的用法
在AngularJS中, 服务是一个比较重要的部分,它是一个对象或者是函数,可以在你的AngularJS的应用中使用.接下来介绍几种比较常用的内建服务以及自定义服务的方法. [内建服务] (1)loc ...
- Echart 改变X轴、Y轴、折线的颜色和数值
在操作E-chart时需要根据需求改变颜色和属性 图1: option = { xAxis: { type: 'category', data: ['Mon', 'Tue', 'Wed', 'Thu' ...
- Session和Cookie之间区别与联系
一. 概念理解 你可能有留意到当你浏览网页时,会有一些推送消息,大多数是你最近留意过的同类东西,比如你想买桌子,上淘宝搜了一下,结果连着几天会有各种各样的桌子的链接.这是因为 你浏览某个网页的时候,W ...
- 利用扩展方法重写JSON序列化和反序列化
利用.NET 3.5以后的扩展方法重写JSON序列化和反序列化,在代码可读性和可维护性上更加加强了. 首先是不使用扩展方法的写法 定义部分: /// <summary> /// JSON ...
- Android DiskLruCache完全解析,硬盘缓存的最佳方案
Android DiskLruCache完全解析,硬盘缓存的最佳方案 概述 记得在很早之前,我有写过一篇文章Android高效加载大图.多图解决方案,有效避免程序OOM,这篇文章是翻译自Andro ...
- 为什么说 LINQ 要胜过 SQL
如果你还没有沉溺于 LINQ,就会想这有啥大惊小怪的.SQL 并没有坏掉,为什么还要对它进行修补呢? 为什么我们还需要另外一种查询语言呢? 流行的说法是 LINQ 同 C#(或者 VB)集成在了一起, ...
- 区别String、StringBuilder、Stringbuffer的总结
1.三者在执行速度上: StringBuilder > StringBuffer > String 2. String:不可变长字符串 StringBuilder : 为可变长字符串 St ...
- Android 蓝牙开发之搜索、配对、连接、通信大全
蓝牙( Bluetooth®):是一种无线技术标准,可实现固定设备.移动设备和楼宇个人域网之间的短距离数据 交换(使用2.4-2.485GHz的ISM波段的UHF无线电波).蓝牙设备最 ...