嘟嘟嘟spoj

嘟嘟嘟vjudge

嘟嘟嘟luogu




这个数据范围都能想到是折半搜索。

但具体怎么搜呢?

还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数为\(a\),右边的数为\(b\),后一半同理为\(c\)和\(d\)。则我们要找的就是满足\(a + c = b + d\)的选取方案。

然后变形\(a - b = d - c\)。因此我们只要在前一半枚举\(a, b\),存起来,然后在后一半枚举\(c, d\),然后查找\(d - c\)是否出现过。

注意不是每一个数都要选,所以枚举的时候有三种情况:1.不选。2.选到左边。3.选到右边。所以复杂度为\(O(3 ^ {\frac{n}{2}})\)。

还有一点就是状态判重,这个用二进制表示就行。

具体实现就是用\(map\)离散化\(a - b\),然后因为\(a - b\)可能由好多种选取方案得来的,所以开一个\(vector\)记录每一个\(a - b\)对应的状态。统计答案的时候用一个\(bool\)数组判重即可。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 22;
const int maxp = 1.2e6 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, m;
ll a[maxn]; int cnt = 0;
map<int, int> mp;
vector<int> v[maxp];
bool vis[maxp]; void dfs1(int stp, ll tot, int now)
{
if(stp > m)
{
if(mp.find(tot) == mp.end()) mp[tot] = ++cnt;
v[mp[tot]].push_back(now); return;
}
dfs1(stp + 1, tot, now);
dfs1(stp + 1, tot + a[stp], now + (1 << (stp - 1)));
dfs1(stp + 1, tot - a[stp], now + (1 << (stp - 1)));
}
void dfs2(int stp, ll tot, int now)
{
if(stp > n)
{
if(mp.find(tot) == mp.end()) return;
int id = mp[tot];
for(int i = 0; i < (int)v[id].size(); ++i) vis[v[id][i] | now] = 1;
return;
}
dfs2(stp + 1, tot, now);
dfs2(stp + 1, tot + a[stp], now + (1 << (stp - 1)));
dfs2(stp + 1, tot - a[stp], now + (1 << (stp - 1)));
} int main()
{
n = read(); m = n >> 1;
for(int i = 1; i <= n; ++i) a[i] = read();
dfs1(1, 0, 0); dfs2(m + 1, 0, 0);
int ans = 0;
for(int i = 1; i < maxp; ++i) ans += (int)vis[i];
write(ans), enter;
return 0;
}

SPOJ-SUBSET Balanced Cow Subsets的更多相关文章

  1. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  2. BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

    BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...

  3. bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)

    2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 462  Solv ...

  4. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  5. [Usaco2012 Open]Balanced Cow Subsets

    Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...

  6. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

  7. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  8. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  9. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

随机推荐

  1. [javaSE] 数组(排序-冒泡排序)

    两层嵌套循环,外层控制循环次数,内层循环进行比较 for(int x=0;x<arr.length-1;x++){ for(int y=0;y<arr.length;y++){ if(ar ...

  2. __block和__weak修饰符的区别

    block下循环引用的问题 __block本身并不能避免循环引用,避免循环引用需要在block内部把__block修饰的obj置为nil __weak可以避免循环引用,但是其会导致外部对象释放了之后, ...

  3. Linux下的mysql默认大小写敏感

    在Linux下: 1.数据库名与表名是严格区分大小写的: 2.表的别名是严格区分大小写的: 3.列名与列的别名在所有的情况下均是忽略大小写的: 4.变量名也是严格区分大小写的: 在Windows下: ...

  4. 1 springboot创建项目

    文章采用idea工具进行springboot项目创建 1点击 New Project 选择[Spring Initializr] 选择Jdk版本其他默认即可 点击Next 2添加项目信息 文章即使用默 ...

  5. MySQL千万级大表优化解决方案

    MySQL千万级大表优化解决方案 非原创,纯属记录一下. 背景 无意间看到了这篇文章,作者写的很棒,于是乎,本人自私一把,把干货保存下来.:-) 问题概述 使用阿里云rds for MySQL数据库( ...

  6. [WEB面试题] web前端面试题JavaScript第一弹,个人整理部分面试题汇总

    以下内容仅供参考,成年人不讲对错只讲利弊 1.什么是JavaScript原型链?如何理解 JavaScript中的每个对象都有一个prototype属性,我们称之为原型 原型的值是一个对象有自己的原型 ...

  7. PHP CURL库学习

    基本请求步骤 : // . 初始化 $ch = curl_init(); // . 设置选项,包括URL curl_setopt($ch, CURLOPT_URL, "http://www. ...

  8. linux 根据进程名杀死进程 -kill进程名

    前两天一个老师给我出了一个linux操作上的问题,现在知道进程名怎样杀死这个进程.或许很多人都会和我一样说用 #pkill 进程名 或是 #killall 进程名 的确这个两个命令都能做到这些,而且我 ...

  9. PHP自定义函数&数组

    <?php//生成随机数 和 时间函数//echo rand();//echo "<br>";//echo rand(0,10);//echo time();// ...

  10. 关系型数据库基本概念及MySQL简述

    数据库基本概念">关系型数据库基本概念 数据库: 对大量信息进行管理的高效解决方案. 按照数据结构来组织.存储和管理数据的库. 数据库系统(DBS,DATABASE SYSTEM): ...