POJ 3294 Life Forms [最长公共子串加强版 后缀数组 && 二分]
题目:http://poj.org/problem?id=3294
Life Forms
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 18549 | Accepted: 5454 |
Description
You may have wondered why most extraterrestrial life forms resemble humans, differing by superficial traits such as height, colour, wrinkles, ears, eyebrows and the like. A few bear no human resemblance; these typically have geometric or amorphous shapes like cubes, oil slicks or clouds of dust.
The answer is given in the 146th episode of Star Trek - The Next Generation, titled The Chase. It turns out that in the vast majority of the quadrant's life forms ended up with a large fragment of common DNA.
Given the DNA sequences of several life forms represented as strings of letters, you are to find the longest substring that is shared by more than half of them.
Input
Standard input contains several test cases. Each test case begins with 1 ≤ n ≤ 100, the number of life forms. n lines follow; each contains a string of lower case letters representing the DNA sequence of a life form. Each DNA sequence contains at least one and not more than 1000 letters. A line containing 0 follows the last test case.
Output
For each test case, output the longest string or strings shared by more than half of the life forms. If there are many, output all of them in alphabetical order. If there is no solution with at least one letter, output "?". Leave an empty line between test cases.
Sample Input
3
abcdefg
bcdefgh
cdefghi
3
xxx
yyy
zzz
0
Sample Output
bcdefg
cdefgh ?
Source
题意概括:
给出 N 个字符串,求其中出现次数超过 N/2 次的最长公共子串,如果有多种输出多种。
解题思路:
做法依然是二分答案长度,关键在于判断条件有两个:
①出现次数是否大于 N/2,这个通过height分组,统计一下即可。
②当前所枚举的子串不仅要求不能重叠,而且要满足来源于原本不同的字符串(因为合并了所有字符串,所以以原来字符串分区,判断两个子串要在不同区)
二分不重叠相同子串的加强版,网上很多版本都是暴力 O( n ) 判断子串是否来自不同串的,复杂度有点爆炸。
这道题复杂度的优化关键在于优化这个判断条件。
有个技巧:合并字符串时在中间加入分隔标志,后面通过 O(1) 标记即可判断是否满足区间要求。
输出子串的话,只要保存满足条件的 sa 即可。
AC code:
#include <set>
#include <map>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <algorithm>
#define INF 0x3f3f3f3f
#define LL long long
#define inc(i, j, k) for(int i = j; i <= k ; i++)
#define mem(i, j) memset(i, j, sizeof(i))
#define gcd(i, j) __gcd(i, j)
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
using namespace std;
const int MAXN = 3e5+;
const int maxn = 3e5+;
int r[MAXN];
int wa[MAXN], wb[MAXN], wv[MAXN], tmp[MAXN];
int sa[MAXN]; //index range 1~n value range 0~n-1
int cmp(int *r, int a, int b, int l)
{
return r[a] == r[b] && r[a + l] == r[b + l];
} void da(int *r, int *sa, int n, int m)
{
int i, j, p, *x = wa, *y = wb, *ws = tmp;
for (i = ; i < m; i++) ws[i] = ;
for (i = ; i < n; i++) ws[x[i] = r[i]]++;
for (i = ; i < m; i++) ws[i] += ws[i - ];
for (i = n - ; i >= ; i--) sa[--ws[x[i]]] = i;
for (j = , p = ; p < n; j *= , m = p)
{
for (p = , i = n - j; i < n; i++) y[p++] = i;
for (i = ; i < n; i++)
if (sa[i] >= j) y[p++] = sa[i] - j;
for (i = ; i < n; i++) wv[i] = x[y[i]];
for (i = ; i < m; i++) ws[i] = ;
for (i = ; i < n; i++) ws[wv[i]]++;
for (i = ; i < m; i++) ws[i] += ws[i - ];
for (i = n - ; i >= ; i--) sa[--ws[wv[i]]] = y[i];
for (swap(x, y), p = , x[sa[]] = , i = ; i < n; i++)
x[sa[i]] = cmp(y, sa[i - ], sa[i], j) ? p - : p++;
}
} int Rank[MAXN]; //index range 0~n-1 value range 1~n
int height[MAXN]; //index from 1 (height[1] = 0)
void calheight(int *r, int *sa, int n)
{
int i, j, k = ;
for (i = ; i <= n; ++i) Rank[sa[i]] = i;
for (i = ; i < n; height[Rank[i++]] = k)
for (k ? k-- : , j = sa[Rank[i] - ]; r[i + k] == r[j + k]; ++k);
return;
} int N;
string tp;
vector<int>ans_id;
int f[MAXN], kase; bool check(int limit, int n, int len)
{
bool flag = false;
int cnt = ;
ans_id.clear();
f[sa[]/len] = kase;
for(int i = ; i <= n; i++){
if(height[i] < limit){ //按height分组
f[sa[i]/len] = ++kase; //给区间标记上组的标号
cnt = ;
}
else{
if(f[sa[i]/len] != kase){ //判断一组中是否有相同区间
f[sa[i]/len] = kase;
if(cnt>=) cnt++;
if(cnt > N/){
flag = true;
ans_id.push_back(sa[i]);
cnt = -;
}
}
}
}
return flag;
} int main()
{
bool book = false;
int ssize, n_len = , ans;
while(~scanf("%d", &N) && N){
n_len = ;
kase = ;
ans = ;
for(int i = ; i <= N; i++){
cin >> tp;
ssize = tp.size();
for(int k = ; k < ssize; k++){
r[n_len++] = tp[k]+;
}
r[n_len++] = i; //作分隔标记
}
n_len--;
r[n_len] = ; da(r, sa, n_len+, );
calheight(r, sa, n_len); int L = , R = ssize+, mid;
while(L <= R){
mid = (L+R)>>;
if(check(mid, n_len, ssize+)){
L = mid+;
ans = mid;
}
else R = mid-;
}
check(ans, n_len, ssize+); if(book) puts("");
if(ans == ) puts("?");
else{
int len = ans_id.size();
// printf("%d\n", len);
for(int i = ; i < len; i++){
for(int k = ans_id[i]; k-ans_id[i]+ <= ans; k++){
printf("%c", r[k]-);
}
puts("");
}
}
if(!book) book = true;
}
return ;
}
422ms 3300k
POJ 3294 Life Forms [最长公共子串加强版 后缀数组 && 二分]的更多相关文章
- cogs249 最长公共子串(后缀数组 二分答案
http://cogs.pro:8080/cogs/problem/problem.php?pid=pxXNxQVqP 题意:给m个单词,让求最长公共子串的长度. 思路:先把所有单词合并成一个串(假设 ...
- 【poj1226-出现或反转后出现在每个串的最长公共子串】后缀数组
题意:求n个串的最长公共子串,子串出现在一个串中可以是它的反转串出现.总长<=10^4. 题解: 对于每个串,把反转串也连进去.二分长度,分组,判断每个组. #include<cstdio ...
- 【poj3294-不小于k个字符串中最长公共子串】后缀数组
1.注意每两个串之间的连接符要不一样. 2.分组的时候要注意最后一组啊!又漏了! 3.开数组要考虑连接符的数量.100010是不够的至少要101000. #include<cstdio> ...
- POJ 3261 Milk Patterns (求可重叠的k次最长重复子串)+后缀数组模板
Milk Patterns Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7586 Accepted: 3448 Cas ...
- BZOJ_2946_[Poi2000]公共串_后缀数组+二分答案
BZOJ_2946_[Poi2000]公共串_后缀数组+二分答案 Description 给出几个由小写字母构成的单词,求它们最长的公共子串的长度. 任务: l 读入单 ...
- poj 1458 Common Subsequence_最长公共子串
题意:略 求最长公共子串 #include<iostream> #include<cstdio> #include<string> using namespace ...
- SPOJ1811最长公共子串问题(后缀自动机)
题目:http://www.spoj.com/problems/LCS/ 题意:给两个串A和B,求这两个串的最长公共子串. 分析:其实本题用后缀数组的DC3已经能很好的解决,这里我们来说说利用后缀自动 ...
- 【wikioi】3160 最长公共子串(后缀自动机)
http://codevs.cn/problem/3160/ sam的裸题...(之前写了spoj上另一题sam的题目,但是spoj被卡评测现在还没评测完QAQ打算写那题题解时再来详细介绍sam的.. ...
- CODE【VS】3160 最长公共子串 (后缀自动机)
3160 最长公共子串 题目描述 Description 给出两个由小写字母组成的字符串,求它们的最长公共子串的长度. 输入描述 Input Description 读入两个字符串 输出描述 Outp ...
随机推荐
- HTTP2 帧基础知识以及Header、CONTINUATION、DATA帧相关资料:
HTTP2于2015年2月28日正式通过IETF组织批准发布,正式定稿.有关它的内容可以参考: HTTP2 概述 http://www.cnblogs.com/ghj1976/p/4552583. ...
- apicloud api.openwin
简单介绍api.openWin: 打开window 若window已存在,则会把该window显示到最前面,同时若url有变化或者reload参数为true时,页面会重新加载.若当前正在进行openW ...
- js与native的交互
WebView与Javascript交互(Android): WebView与Javascript交互是双向的数据传递,1.H5网页的JS函数调用Native函数 2.Native函数调用JS函数,具 ...
- phoenix使用vue
phoenix使用vue mix phoenix.new ass2 Fetch and install dependencies? [Yn] y 修改 package.json { "rep ...
- 【webpack】从零开始学webpack
背景:目前公司的项目全是用vue写的,建项目的话使用的是用vue-cli直接配置好的webpack,进行打包.现在我就是想实现自己写一个类似vue-cli的架子 一.安装全局依赖 npm instal ...
- LeetCode 527---Word Abbreviation
527. Word Abbreviation Given an array of n distinct non-empty strings, you need to generate minimal ...
- Keras vs. PyTorch
We strongly recommend that you pick either Keras or PyTorch. These are powerful tools that are enjoy ...
- Session、Cookie简单理解
Session: session是一种记录客户状态的机制,session是保存在服务器上的,当浏览器访问服务器的时候,服务器把客户端信息以某种形式记录在服务器上,这就是所谓的session,当浏览器再 ...
- 程序控制结构及for循环、foreach循环、迭代器
结构化程序设计 三种基本控制结构:顺序结构.选择结构.循环结构. 在这种思想的指导下,发展出了面向过程编程方式.面向过程编程的核心是算法+数据结构.算法可以用顺序.选择.循环这三种基本控制结构来实现. ...
- maven 编译打包时,明明类文件没有问题,却提示错误:未结束的字符串字面值,maven-compiler-plugin:2.3.2
maven错误提示如下: Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:2.3.2:compile (de ...