【BZOJ】3195: [Jxoi2012]奇怪的道路【状压/奇偶性】【思路】
3195: [Jxoi2012]奇怪的道路
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 802 Solved: 529
[Submit][Status][Discuss]
Description
小宇从历史书上了解到一个古老的文明。这个文明在各个方面高度发达,交通方面也不例外。考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n。m条道路连接在这些城市之间,每条道路将两个城市连接起来,使得两地的居民可以方便地来往。一对城市之间可能存在多条道路。
据史料记载,这个文明的交通网络满足两个奇怪的特征。首先,这个文明崇拜数字K,所以对于任何一条道路,设它连接的两个城市分别为u和v,则必定满足1 <=|u - v| <= K。此外,任何一个城市都与恰好偶数条道路相连(0也被认为是偶数)。不过,由于时间过于久远,具体的交通网络我们已经无法得知了。小宇很好奇这n个城市之间究竟有多少种可能的连接方法,于是她向你求助。
方法数可能很大,你只需要输出方法数模1000000007后的结果。
Input
输入共一行,为3个整数n,m,K。
Output
输出1个整数,表示方案数模1000000007后的结果。
Sample Input
3 4 1
【输入样例2】
4 3 3
Sample Output
3
【输出样例2】
4
【数据规模】
HINT
100%的数据满足1
<= n <= 30, 0 <= m <= 30, 1 <= K <= 8.
【题目说明】
两种可能的连接方法不同当且仅当存在一对城市,它们间的道路数在两种方法中不同。
在交通网络中,有可能存在两个城市无法互相到达。
Solution
是一道很好的思路题!
看到数据范围想到状压也完全束手无策啊QAQ
状态定义非常巧妙!$dp[i][j][s][l]$表示当前到了第$i$个点,连了$j$条边(为了避免边的重复规定每次只能向前连边避免重复),$i-k$到$i$点此时度数奇偶性的状态为$s$,当前在和$i-k+l$连边时的方案数!
所以当$i$这个点可以和$i-k+l$连边时,状态只需要在对应位置^1并且$j+1$即可表示加边。如果选择不加,就直接把$l$往后移一位即可了。
$i$转移到$i+1$时,需要判断当前状态是否满足第$i-k$位奇偶性为偶,因为到后面它就没用了,这里必须满足条件。然后用$dp[i][j][s][k]$转移到$dp[i+1][j][s>>1][0]$即可。
Code
#include<bits/stdc++.h>
#define mod 1000000007
using namespace std; int n, m, k;
long long dp[][][][]; int main() {
scanf("%d%d%d", &n, &m, &k);
dp[][][][] = ;
for(int i = ; i <= n; i ++) {
for(int j = ; j <= m; j ++)
for(int s = ; s < ( << k + ); s ++) {
for(int l = ; l < k; l ++) {
int tmp = dp[i][j][s][l];
if(tmp) {
dp[i][j][s][l + ] += tmp;
dp[i][j][s][l + ] %= mod;
if(j < m && i - k + l > ) dp[i][j + ][s ^ ( << k) ^ ( << l)][l] += tmp, dp[i][j + ][s ^ ( << k) ^ ( << l)][l] %= mod;
}
}
if(!(s & ) && dp[i][j][s][k])
dp[i + ][j][s >> ][] = dp[i][j][s][k];
}
}
printf("%lld", dp[n + ][m][][]);
return ;
}
【BZOJ】3195: [Jxoi2012]奇怪的道路【状压/奇偶性】【思路】的更多相关文章
- BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP
传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...
- bzoj 3195 [Jxoi2012]奇怪的道路
3195: [Jxoi2012]奇怪的道路 Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座城市,编 ...
- 【BZOJ3195】[Jxoi2012]奇怪的道路 状压DP
[BZOJ3195][Jxoi2012]奇怪的道路 Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座 ...
- bzoj3195 [Jxoi2012]奇怪的道路——状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3195 看到数据范围就应该想到状压呢... 题解(原来是这样):https://www.cnb ...
- BZOJ 3195: [Jxoi2012]奇怪的道路(状压dp)
f[i][j][s]表示当前处理第i个点,前i-1个点已连j条边,第i个点开始k个点的奇偶性状态. #include<cstring>#include<algorithm>#i ...
- 【BZOJ-3195】奇怪的道路 状压DP (好题!)
3195: [Jxoi2012]奇怪的道路 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 305 Solved: 184[Submit][Statu ...
- 3195: [Jxoi2012]奇怪的道路
3195: [Jxoi2012]奇怪的道路 链接 思路: 因为一个点只会和它前后k个点连边,所以,记录下每个点的前k个点和它自己(共k+1个点)的状态,1表示奇数,0表示偶数. dp[i][j][s] ...
- bzoj 3195 奇怪的道路 状压dp
看范围,状压没毛病 但是如果随便连的话给开1<<16,乘上n,m就爆了 所以规定转移时只向回连边 于是想状态数组:f[i][j]表示到i这里i前K位的状态为j(表示奇偶) 发现有条数限制, ...
- 奇怪的道路——状压DP
题目描述 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外. 考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n.m条道路连接在这些城市之间,每条道路将两个 ...
随机推荐
- 1->小规模集群架构规划
"配置无人值守批量安装系统(Cobbler)" "搭建PPTP VPN/ NTP/Firewalld内部共享上网 " "搭建跳板机服务jumpserv ...
- C# TimeSpan获取 年月
public static string GetYearMonthDayString(this DateTime expires) { try { var now = DateTime.Now; Ti ...
- Isolate randomforest检测异常点的非监督方法
由于异常数据的两个特征(少且不同: few and different) 异常数据只占很少量; 异常数据特征值和正常数据差别很大. iTree的构成过程如下: l 随机选择一个属性Attr: l ...
- java基础79 会话管理(Cookie技术、Session技术)
1.概念 会话管理:管理浏览器和服务器之间会话过程中产生的会话数据. Cookie技术:会话数据保存到浏览器客户端.[存 编号/标记(id)] Session技术:会话技术会保存到 ...
- java基础59 JavaScript运算符与控制流程语句(网页知识)
1.JavaScript运算符 1.1.加减乘除法 加法:+(加法,连接符,正数) true是1,false是0 减法:- 乘法:* 除法:/ 1.2.比较运算符 ...
- 洛谷P3385负环
传送门 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...
- 洛谷P1266速度限制
传送门啦 看起来是一个最短路问题,但是引入了速度限制,就要写一下二维最短路了. $ dis[i][j] $ :表示到i这个点,速度为j的最短时间. #include <iostream> ...
- hihoCoder #1185 : 连通性·三(强联通分量+拓扑排序)
#1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...
- SQlserver创建函数实现只取某个字段的数字部分
create FUNCTION [dbo].[GET_NUMBER](@S VARCHAR(100)) RETURNS VARCHAR(100) AS BEGIN WHILE PATINDEX('%[ ...
- Linux 系统目录结构和常用指令
一.系统目录结构 /bin 经常使用的命令 /etc 所有系统管理所需的配置文件和子目录 /home 用户主目录 /usr 应用程序目录 /usr/bin 系统用户使用的应用程序 /usr/sbin ...