从POJ 2356来体会抽屉原理的妙用= =!

题意:

给你一个n,然后给你n个数,让你输出一个数或者多个数,让这些数的和能够组成n;

先输出一个数,代表有多少个数的和,然后再输出这些数;

题解:

首先利用前缀和先预处理一下,然后如果sum[i]==0的话,很显然就直接输出i,然后接下来从第一位一直输出到第i位就行了

然后接下来直接用一个mod数组表示上一个答案为这个mod的时候的编号是多少

就是mod[sum[i]%n]=i;

然后判断一下if(mod[sum[i]%n]!=0)然后就直接从mod[sum[i]%n]+1位一直输出到第i位就行了。

证明如下,如果sum[i]和sum[j],它俩mod n的值都相同的话,则必然可以(sum[i]-sum[j])%n==0;

好了,就是这样,喵~

我觉得我写的还是蛮清楚吧= =!

 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
int a[];
int mod[];
int sum[];
int main()
{
int n;
while(cin>>n)
{
memset(mod,,sizeof(mod));
memset(a,,sizeof(a));
memset(sum,,sizeof(sum));
for(int i=;i<=n;i++)
{
cin>>a[i];
sum[i]+=a[i]+sum[i-];
}
for(int i=;i<=n;i++)
{
if(sum[i]%n==)
{
cout<<i<<endl;
for(int j=;j<i;j++)
cout<<a[j]<<endl;
cout<<a[i];
break;
}
if(mod[sum[i]%n]!=)
{
cout<<i-mod[sum[i]%n]<<endl;
for(int j=mod[sum[i]%n]+;j<i;j++)
cout<<a[j]<<endl;
cout<<a[i];
break;
}
mod[sum[i]%n]=i;
}
}
return ;
}

POJ 2356 Find a multiple 抽屉原理的更多相关文章

  1. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  2. poj2356 Find a multiple(抽屉原理|鸽巢原理)

    /* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...

  3. POJ2356 Find a multiple 抽屉原理(鸽巢原理)

    题意:给你N个数,从中取出任意个数的数 使得他们的和 是 N的倍数: 在鸽巢原理的介绍里面,有例题介绍:设a1,a2,a3,……am是正整数的序列,试证明至少存在正数k和l,1<=k<=l ...

  4. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

  5. poj 2356 Find a multiple(鸽巢原理)

    Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...

  6. poj 2356 Find a multiple【鸽巢原理 模板应用】

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6651   Accepted: 2910   ...

  7. Find a multiple POJ - 2356 容斥原理(鸠巢原理)

    1 /* 2 这道题用到了鸠巢原理又名容斥原理,我的参考链接:https://blog.csdn.net/guoyangfan_/article/details/102559097 3 4 题意: 5 ...

  8. [POJ 2356] Find a multiple

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6535   Accepted: 2849   ...

  9. POJ 2356 Find a multiple( 鸽巢定理简单题 )

    链接:传送门 题意:题意与3370类似 注意:注意输出就ok,输出的是集合的值不是集合下标 /***************************************************** ...

随机推荐

  1. Jenkins忘记用户名密码

    一.进入C盘.jenkins配置文件中找到config.xml 需要删除一下内容: <useSecurity>true</useSecurity> <authorizat ...

  2. mysql高可用架构 -> MHA环境准备-02

    环境准备 环境检查(三个测试节点的环境都应该是一样的,只有ip不同) [root@db01 bin]# cat /etc/redhat-release //系统版本 CentOS Linux rele ...

  3. 03 Go 1.3 Release Notes

    Go 1.3 Release Notes Introduction to Go 1.3 Changes to the supported operating systems and architect ...

  4. 深入理解HashMap(及hash函数的真正巧妙之处)

    原文地址:http://www.iteye.com/topic/539465 Hashmap是一种非常常用的.应用广泛的数据类型,最近研究到相关的内容,就正好复习一下.网上关于hashmap的文章很多 ...

  5. 读书笔记--C陷阱与缺陷(四)

    第四章 1. 连接器 C语言的一个重要思想就是分别编译:若干个源程序可在不同的时候单独进行编译,恰当的时候整合到一起. 连接器一般与C编译器分离,其输入是一组目标模块(编译后的模块)和库文件,输出是一 ...

  6. thinkphp5与thinkphp3.X对比

    原文https://www.cnblogs.com/wupeiky/p/5850108.html 首先声明本章节并非是指导升级旧的项目到5.0,而是为了使用3.X版本的开发者更快的熟悉并上手这个全新的 ...

  7. android拾遗——AlarmManager的使用

    AlarmManager的作用文档中的解释是:在特定的时刻为我们广播一个指定的Intent.简单的说就是我们设定一个时间,然后在该时间到来时,AlarmManager为我们广播一个我们设定的Inten ...

  8. day5模块学习 -- time、datetime时间模块

    1.定义 模块:用来从逻辑上组织python(变量,函数,类,逻辑:实现一个功能)代码,本质就是.py结尾的python文件(文件名:test.py,对应的模块名test) 包:用来从逻辑上组织模块的 ...

  9. 【AtCoder】AGC011 C - Squared Graph

    题解 大意是给出一张图,然后建一张新图,新图的点标号是(a,b) 如果a和c有一条边,b和d有一条边,那么(a,b)和(c,d)之间有一条边 我们把这道题当成这道题来做,给出两张图,如果第一张图有边( ...

  10. Python全栈开发之17、tornado和web基础知识

    一.web基础知识 学习web框架之前,先来看一下web基础知识,首先要明白其本质就是socket,用户对应一个socket客户端,但是如果从socket开始开发web应用程序那么效率太了,正确的做法 ...