THE MATRIX PROBLEM

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5437    Accepted Submission(s): 1372

Problem Description
You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
 
Input
There are several test cases. You should process to the end of file.
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

 
Output
If there is a solution print "YES", else print "NO".
 
Sample Input
3 3 1 6
2 3 4
8 2 6
5 2 9
 
Sample Output
YES
 
Source
 
Recommend
lcy
 

题目意思就是是否存在ai,bj,使得l<=cij*(ai/bj)<=u (1<=i<=n,1<=j<=m)成立

首先,把cij除到两边:l'<=ai/bj<=u',如果差分约束的话,应该是ai-bj的形式,于是可以取对数

log(l')<=log(ai)-log(bj)<=log(u')

把log(ai)和log(bj)看成两个点ai和bj,化成求最短路的形式:dis[ai]-dis[bj]<=log(u'),dis[bj]-dis[ai]<=-log(l')

然后判负环就行,深搜和广搜都可以

注意,如果spfa队列判负环:

(1)不必判断某个点入队次数大于N,只要判断是否大于sqrt(1.0*N)

(2)或者所有点的入队次数大于T*N,即存在负环,一般T取2

N为所有点的个数

1, SPFA广搜:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath> using namespace std; const int N=; struct Edge{
int to,nxt;
double cap;
}edge[N*N]; int n,m,cnt,head[N];
int vis[N],Count[N];
double dis[N],L,U; void addedge(int cu,int cv,double cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
} int SPFA(){
int limit=(int)sqrt(1.0*(n+m));
queue<int> q;
while(!q.empty())
q.pop();
memset(vis,,sizeof(vis));
memset(Count,,sizeof(Count));
for(int i=;i<=n+m;i++){
dis[i]=;
q.push(i);
}
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].cap){
dis[v]=dis[u]+edge[i].cap;
if(!vis[v]){
vis[v]=;
if(++Count[v]>limit)
return ;
q.push(v);
}
}
}
}
return ;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
cnt=;
memset(head,-,sizeof(head));
double x;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%lf",&x);
addedge(j+n,i,log(U/x));
addedge(i,j+n,-log(L/x));
}
if(SPFA())
puts("YES");
else
puts("NO");
}
return ;
}

2, SPFA深搜:(这个更快??)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath> using namespace std; const int N=; struct Edge{
int to,nxt;
double cap;
}edge[N*N]; int n,m,cnt,head[N];
int vis[N],instack[N];
double dis[N],L,U; void addedge(int cu,int cv,double cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
} int SPFA(int u){
if(instack[u])
return ;
instack[u]=;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].cap){
dis[v]=dis[u]+edge[i].cap;
if(!SPFA(v))
return ;
}
}
instack[u]=;
return ;
} int solve(){
memset(vis,,sizeof(vis));
memset(instack,,sizeof(instack));
memset(dis,,sizeof(dis));
for(int i=;i<=n+m;i++)
if(!vis[i]){
if(!SPFA(i))
return ;
}
return ;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
cnt=;
memset(head,-,sizeof(head));
double x;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%lf",&x);
addedge(j+n,i,log(U/x));
addedge(i,j+n,-log(L/x));
}
if(solve())
puts("YES");
else
puts("NO");
}
return ;
}

HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)的更多相关文章

  1. HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...

  2. HDU 3666.THE MATRIX PROBLEM 差分约束系统

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  4. HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  5. hduTHE MATRIX PROBLEM(差分约束)

    题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...

  6. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  7. hdu 3666 THE MATRIX PROBLEM

    差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...

  8. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. poj3083 Children of the Candy Corn 深搜+广搜

    这道题有深搜和广搜.深搜还有要求,靠左或靠右.下面以靠左为例,可以把简单分为上北,下南,左西,右东四个方向.向东就是横坐标i不变,纵坐标j加1(i与j其实就是下标).其他方向也可以这样确定.通过上一步 ...

随机推荐

  1. 我们为什么以及是如何从 Angular.js 迁移到 Vue.js?

    在我写这篇文章的时候,我们刚刚从我们的应用程序代码库中删除了最后一行AngularJS代码,结束了一个为期4个月的非侵入性工作,将我们的应用程序从AngularJS迁移到VueJS.在这篇文章中,我将 ...

  2. 附2 hystrix详述(2)- 配置

    一.hystrix在生产中的建议 1.保持timeout的默认值(1000ms),除非需要修改(其实通常会修改) 2.保持threadpool的的线程数为10个,除非需要更多 3.依赖标准的报警和监控 ...

  3. Longest Consecutive Sequence leetcode java

    题目: Given an unsorted array of integers, find the length of the longest consecutive elements sequenc ...

  4. RS开发值提示默认为当前月

    在报表的开发过程中,按月查询数据,但是由于数据仓库中涉及多年历史数据,而用户最关心的却是最近的数据,针对这个情况.当用户第一次点击报表想看到的就是当前月的数据,那么如何去做呢? 下面用一个小例子来实战 ...

  5. (转)NGUI制作转圈的技能CD特效

    在技能图标上面放个半透明的精灵,用来做技能冷却的特效,如下图所示,我就用NGUI中的图标来带代替. NGUI制作转圈的技能CD特效 然后修改一下特效的精灵类型,它是在技能图标上面悬浮半透明可旋转的精灵 ...

  6. Android网络缓存的实现思路

    在开发群里有多位同学问到了关于Android中网络缓存的问题.事实上不管是Android还是iOS,缓存的大致思路都是同样的,以下就几种情况下的缓存做一个大致的介绍.顺便说一下有些开源的网络请求框架已 ...

  7. .NET破解之迅捷PDF转换器(续)

    在以前的博文<.NET破解之迅捷PDF转换器>中使用了暴力破解的方法,现在软件版本从5.0升级到6.3,所以也尝试用新的方法. 方法一:暴力破解法 如往常一样,查找搜索到关键的函数,即Is ...

  8. Python中的乱码

        我把写好的Python脚本导入到ArcGIS中的ToolBox中,在本机测试是没有问题的.为了把工具分享给其他人,即在其他电脑上使用,我必须将脚本文件(*.py)导入到工具箱文件(*.tbx) ...

  9. ZH奶酪:PHP安装扩展imagick

    明明几个简单命令就能搞定,但是按照网上的方法就是不行,弄了一天,最后发现只需要两行命令,而且不需要修改什么php.ini: sudo apt-get install php5-imagick sudo ...

  10. Windows 之 防火墙

          对于只使用浏览.电子邮件等系统自带的网络应用程序,Windows防火墙(firewall)根本不会产生影响.也就是说,用IE.OutlookExpress等系统自带的程序进行网络连接,防火 ...