THE MATRIX PROBLEM

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5437    Accepted Submission(s): 1372

Problem Description
You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
 
Input
There are several test cases. You should process to the end of file.
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

 
Output
If there is a solution print "YES", else print "NO".
 
Sample Input
3 3 1 6
2 3 4
8 2 6
5 2 9
 
Sample Output
YES
 
Source
 
Recommend
lcy
 

题目意思就是是否存在ai,bj,使得l<=cij*(ai/bj)<=u (1<=i<=n,1<=j<=m)成立

首先,把cij除到两边:l'<=ai/bj<=u',如果差分约束的话,应该是ai-bj的形式,于是可以取对数

log(l')<=log(ai)-log(bj)<=log(u')

把log(ai)和log(bj)看成两个点ai和bj,化成求最短路的形式:dis[ai]-dis[bj]<=log(u'),dis[bj]-dis[ai]<=-log(l')

然后判负环就行,深搜和广搜都可以

注意,如果spfa队列判负环:

(1)不必判断某个点入队次数大于N,只要判断是否大于sqrt(1.0*N)

(2)或者所有点的入队次数大于T*N,即存在负环,一般T取2

N为所有点的个数

1, SPFA广搜:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath> using namespace std; const int N=; struct Edge{
int to,nxt;
double cap;
}edge[N*N]; int n,m,cnt,head[N];
int vis[N],Count[N];
double dis[N],L,U; void addedge(int cu,int cv,double cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
} int SPFA(){
int limit=(int)sqrt(1.0*(n+m));
queue<int> q;
while(!q.empty())
q.pop();
memset(vis,,sizeof(vis));
memset(Count,,sizeof(Count));
for(int i=;i<=n+m;i++){
dis[i]=;
q.push(i);
}
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].cap){
dis[v]=dis[u]+edge[i].cap;
if(!vis[v]){
vis[v]=;
if(++Count[v]>limit)
return ;
q.push(v);
}
}
}
}
return ;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
cnt=;
memset(head,-,sizeof(head));
double x;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%lf",&x);
addedge(j+n,i,log(U/x));
addedge(i,j+n,-log(L/x));
}
if(SPFA())
puts("YES");
else
puts("NO");
}
return ;
}

2, SPFA深搜:(这个更快??)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath> using namespace std; const int N=; struct Edge{
int to,nxt;
double cap;
}edge[N*N]; int n,m,cnt,head[N];
int vis[N],instack[N];
double dis[N],L,U; void addedge(int cu,int cv,double cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
} int SPFA(int u){
if(instack[u])
return ;
instack[u]=;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].cap){
dis[v]=dis[u]+edge[i].cap;
if(!SPFA(v))
return ;
}
}
instack[u]=;
return ;
} int solve(){
memset(vis,,sizeof(vis));
memset(instack,,sizeof(instack));
memset(dis,,sizeof(dis));
for(int i=;i<=n+m;i++)
if(!vis[i]){
if(!SPFA(i))
return ;
}
return ;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
cnt=;
memset(head,-,sizeof(head));
double x;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%lf",&x);
addedge(j+n,i,log(U/x));
addedge(i,j+n,-log(L/x));
}
if(solve())
puts("YES");
else
puts("NO");
}
return ;
}

HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)的更多相关文章

  1. HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...

  2. HDU 3666.THE MATRIX PROBLEM 差分约束系统

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  4. HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  5. hduTHE MATRIX PROBLEM(差分约束)

    题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...

  6. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  7. hdu 3666 THE MATRIX PROBLEM

    差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...

  8. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. poj3083 Children of the Candy Corn 深搜+广搜

    这道题有深搜和广搜.深搜还有要求,靠左或靠右.下面以靠左为例,可以把简单分为上北,下南,左西,右东四个方向.向东就是横坐标i不变,纵坐标j加1(i与j其实就是下标).其他方向也可以这样确定.通过上一步 ...

随机推荐

  1. codeforces 560 C Gerald&#39;s Hexagon

    神精度--------这都能过.随便算就好了,根本不用操心 就是把六边形补全成三角形.然后去掉补的三个三角形,然后面积除以边长1的三角形的面积就可以.... #include<map> # ...

  2. go语言之进阶篇成员操作

    1.成员操作 示例: package main import "fmt" type Person struct { name string //名字 sex byte //性别, ...

  3. Cesium中Homebutton改变默认跳转位置 【转】

    在Cesium中,Homebutton的默认跳转位置是美国,那么在开发中我们如何更改这个默认跳转位置呢,这就要更改一下源代码了: Camera.DEFAULT_VIEW_RECTANGLE = Rec ...

  4. 牛气冲天的Iframe应用笔记

    纵观时下网站,本来网速就有些慢,可是几乎每页都要放什么Banner,栏目图片,版权等一大堆雷同的东西,当然,出于网站风格统一.广告效应的需要,本无可厚非,可毕竟让用户的钱包为这些“点缀“的东西”日益消 ...

  5. mysql数据库查询优化

    上两周一直想办法提高查询速度,取得一点效果,解决了部分问题,记下来以便将来自己查看. 由于公司没有专门的DBA,我自己对mysql数据库也不是很熟悉,而且这个JAVA开发的网络审计系统的管理系统,是经 ...

  6. 实现ssh的无password登录

    这里所说的ssh是指OpenSSH SSHclient.是用于登录远程主机.而且在远程主机上运行命令.它的目的是替换rlogin和rsh,同一时候在不安全的网络之上,两个互不信任的主机之间,提供加密的 ...

  7. C++和.net的集合类对应

      Here's what I've found (ignoring the old non-generic collections): Array - C array, though the .NE ...

  8. Escape字符总结

    有如下的 escape字符. 对于十进制来说,\后面只涵盖3个字符,比如\1234,是\123和字符4. 但是对于十六进制,后面会涵盖四个字符,比如\x1234,后面的四个字符都在\的涵盖范围内.  

  9. Android 四大组件学习之BroadcastReceiver三

    本节学习广播的分类. 广播分为无序广播和有序广播 无序广播: 广播发送者的action与广播接收者的action都匹配的话,所以广播介绍者都能够收到这条广播,而且没有先后顺序,能够觉得是同一时候收到 ...

  10. Loadrunner 怎么将response的数据下载下来

    我们请求url时候会遇见返回的数据格式为json格式.但是怎么显示到reply页面呢?其实有一个参数需要设置成0 web_url("GetRequestData", "U ...