kruskal重构树
kruskal重构树
kruskal重构树,顾名思义,是在kruskal的时候顺便搞出来的一棵重构树,具体地说是一个堆。
先说说这个东西是怎么搞出来的吧:默认事先把边按边权从小到大排序,在kruskal的时候,如果当前加入的边连接的两个点\(x\)和\(y\)不在同一个连通块中,就新建一个节点作为\(x\)和\(y\)所在树的根节点的父亲,令这个节点的权值为这条边的权值,还有一般kruskal也要做的把并查集合并;在同一个连通块中就不管。
从模板题看看重构树的性质:BZOJ3732 Network
仔细观察发现重构树上两点的lca的权值就是这两点之间路径的最大边权的最小值。其实如果是按边权从大到小排序的话,lca的权值就是最小边权的最大值,我们就是用这条性质来这道做题的。
树剖lca最好了。
#include <cstdio>
#include <cctype>
#include <algorithm>
#define R register
#define I inline
#define B 1000000
using namespace std;
const int N = 300007;
char buf[B], *p1, *p2;
I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1 == p2) ? EOF : *p1++; }
I int rd() {
R int f = 0;
R char c = gc();
while (c < 48 || c > 57)
c = gc();
while (c > 47 && c < 58)
f = f * 10 + (c ^ 48), c = gc();
return f;
}
int f[N], val[N], fa[N], son[N][2], dep[N], top[N], cnt;
struct edge{int x, y, z;}e[N];
I int operator < (edge a, edge b) { return a.z < b.z; }
I int find(int x) {
R int r = x, y;
while (f[r] ^ r)
r = f[r];
while (x ^ r)
y = f[x], f[x] = r, x = y;
return r;
}
void dfs1(int x, int f) {
fa[x] = f, dep[x] = dep[f] + 1;
if (son[x][0])
dfs1(son[x][0], x), dfs1(son[x][1], x);
}
void dfs2(int x, int t) {
top[x] = t;
if (son[x][0])
dfs2(son[x][0], t), dfs2(son[x][1], son[x][1]);
}
I int lca(int x, int y) {
while (top[x] ^ top[y])
dep[top[x]] > dep[top[y]] ? x = fa[top[x]] : y = fa[top[y]];
return dep[x] < dep[y] ? x : y;
}
int main() {
R int n = rd(), m = rd(), k = rd(), i, x, y;
for (i = 1; i <= m; ++i)
e[i] = (edge){rd(), rd(), rd()};
for (i = 1; i <= n; ++i)
f[i] = i;
sort(e + 1, e + m + 1), cnt = n;
for (i = 1; i <= m; ++i) {
x = find(e[i].x), y = find(e[i].y);
if (x ^ y) {
++cnt, f[cnt] = f[x] = f[y] = cnt, val[cnt] = e[i].z;
son[cnt][0] = x, son[cnt][1] = y;
}
}
dfs1(cnt, 0), dfs2(cnt, cnt);
for (i = 1; i <= k; ++i)
x = rd(), y =rd(), printf("%d\n", val[lca(x, y)]);
return 0;
}
了解更多的性质可以做做这些题:
[NOI2018]归程 题解
[ONTAK2010]Peaks 题解
[IOI2018] werewolf 狼人 题解
kruskal重构树的更多相关文章
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- bzoj 3551 kruskal重构树dfs序上的主席树
强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...
- kruskal重构树学习笔记
\(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal\) 求最小(大)生成树,树上求 \(lca\). 算法详 ...
- Kruskal重构树入门
这个知识点好像咕咕咕了好长了..趁还没退役赶紧补一下吧.. 讲的非常简略,十分抱歉.. 前置知识 Kruskal算法 一定的数据结构基础(如主席树) Kruskal重构树 直接bb好像不是很好讲,那就 ...
- UOJ#407. 【IOI2018】狼人 Kruskal,kruskal重构树,主席树
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ407.html 题解 套路啊. 先按照两个节点顺序各搞一个kruskal重构树,然后问题转化成两棵krus ...
- LOJ.2865.[IOI2018]狼人(Kruskal重构树 主席树)
LOJ 洛谷 这题不就是Peaks(加强版)或者归程么..这算是\(IOI2018\)撞上\(NOI2018\)的题了? \(Kruskal\)重构树(具体是所有点按从小到大/从大到小的顺序,依次加入 ...
- 洛谷P4768 [NOI2018]归程(Kruskal重构树)
题意 直接看题目吧,不好描述 Sol 考虑暴力做法 首先预处理出从$1$到每个节点的最短路, 对于每次询问,暴力的从这个点BFS,从能走到的点里面取$min$ 考虑如何优化,这里要用到Kruskal重 ...
随机推荐
- C# 数据上传(自用笔记)
#region 数据上传 [HttpPost] public ActionResult UploadFile() { HttpFileCollectionBase files = Request.Fi ...
- 使用innodb_ruby探查Innodb索引结构
使用innodb_ruby探查Innodb索引结构 innodb_ruby 是使用 Ruby 编写的 InnoDB 文件格式解析器.innodb_ruby 的目的是暴露一些其他隐藏的 InnoDB 原 ...
- Linux系统锁定关键文件
锁定系统关键文件 1.密码.账号文件 chattr +i /etc/passwd /etc/group /etc/shadow /etc/gshadow /etc/inittab 加锁:chattr ...
- 解决windows10下无法安装.net framework 3.5,错误代码0x800F081F
1.下载 NET Framework 3.5的安装包netfx3.cab: http://download.windowsupdate.com/d/msdownload/update/software ...
- November 28th 2016 Week 49th Monday
You only live once, but if you do it right, once is enough. 年华不虚度,一生也足矣. One today can win two tomor ...
- DevExpress02、RibbonControl
RibbonControl 常用操作 1.如何代码显示选中的页 ribbonControl1.SelectedPage = ribbonPage2; 2.如何绑定ApplicationMenus和Po ...
- OpenStack虚拟机快照和增量备份实现
1 快照的概念一般对快照的理解就是能够将系统还原到某个瞬间,这就是快照的作用.快照针对要保存的数据分为内存快照和磁盘快照,内存快照就是保存当前内存的数据,磁盘快照就是保存硬盘的数据.快照针对保存方式又 ...
- angular 生命周期钩子 ngOnInit() 和 ngAfterViewInit() 的区别
angular 生命周期钩子的详细介绍在 https://angular.cn/guide/lifecycle-hooks 文档中做了介绍. ngOnInit() 在 Angular 第一次显示数据 ...
- python第十一课——转换结构
3.转换函数:int():float():str():list():tuple():set():dict():bool(): 案例: #演示各个转换函数的使用: 数值型-->字符型使用:str( ...
- Yii设置Cache缓存的方法
先在配置文件components数组中加上: 'cache'=>array( 'class'=>'CFileCache'), 设置Cache: Yii::app()->cache-& ...