题目地址:HDU 2256

思路:

(sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n;

这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6);

an+bn*(sqrt(6))=(5+2*sqrt(6))*(a(n-1)+b(n-1)*sqrt(6))

=(5*a(n-1)+12*b(n-1))+(2*a(n-1)+5*b(n-1))*sqrt(6);

显然,an=5*a(n-1)+12*b(n-1);bn=2*a(n-1)+5*b(n-1);

此时能够非常easy的构造出一个矩阵来高速求an和bn:

5,12

2,5

那么下一步应该怎么办呢?对于我等菜渣来说最好的办法当然是。。打表。。找规律。。

然后规律就是ans=2*an-1;

那么怎么证明呢?证明例如以下:

(5+2*sqrt(6))^n=an+bn*sqrt(6);  (5-2*sqrt(6))^n=an-bn*sqrt(6);

(5+2*sqrt(6))^n+(5-2*sqrt(6))^n=2*an;

然后,因为

(5-2*sqrt(6))^n=(0.101....)^n<1;

再因为

(5+2*sqrt(6))^n=2*an-(5-2*sqrt(6))^n

可得

2*an-1<(5+2*sqrt(6))^n<2*an;

所以对(5+2*sqrt(6))^n向下取整的结果一定是2*an-1;

证明完成。

所以说仅仅要用矩阵高速幂求出an就可以。

代码例如以下:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
const int mod=1024;
struct matrix
{
int ma[3][3];
}init, res;
matrix Mult(matrix x, matrix y)
{
matrix tmp;
int i, j, k;
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
{
tmp.ma[i][j]=0;
for(k=0;k<2;k++)
{
tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
}
}
}
return tmp;
}
matrix Pow(matrix x, int k)
{
int i, j;
matrix tmp;
for(i=0;i<2;i++) for(j=0;j<2;j++) tmp.ma[i][j]=(i==j);
while(k)
{
if(k&1) tmp=Mult(tmp,x);
x=Mult(x,x);
k>>=1;
}
return tmp;
}
int main()
{
int t, k;
scanf("%d",&t);
while(t--)
{
scanf("%d",&k);
init.ma[0][0]=5;
init.ma[0][1]=12;
init.ma[1][0]=2;
init.ma[1][1]=5;
res=Pow(init,k-1);
int ans=(2*(res.ma[0][0]*5+res.ma[0][1]*2)-1)%mod;
printf("%d\n",ans);
}
return 0;
}

HDU 2256 Problem of Precision(矩阵高速幂)的更多相关文章

  1. HDU 2256 Problem of Precision (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256 最重要的是构建递推式,下面的图是盗来的.貌似这种叫共轭数. #include <iostr ...

  2. HDU 2256 Problem of Precision(矩阵)

    Problem of Precision [题目链接]Problem of Precision [题目类型]矩阵 &题解: 参考:点这里 这题做的好玄啊,最后要添加一项,之后约等于,但是有do ...

  3. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  4. LightOJ 1070 Algebraic Problem (推导+矩阵高速幂)

    题目链接:problem=1070">LightOJ 1070 Algebraic Problem 题意:已知a+b和ab的值求a^n+b^n.结果模2^64. 思路: 1.找递推式 ...

  5. hdu 5411 CRB and Puzzle 矩阵高速幂

    链接 题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/ 给定n个点 常数m 以下n行第i行第一个数字表示i点的出边数.后面给出这些 ...

  6. HDU 2256 Problem of Precision (矩阵快速幂)(推算)

    Problem of Precision Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  7. HDU 2256 Problem of Precision 数论矩阵快速幂

    题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...

  8. HDU 2256 Problem of Precision( 矩阵快速幂 )

    链接:传送门 题意:求式子的值,并向下取整 思路: 然后使用矩阵快速幂进行求解 balabala:这道题主要是怎么将目标公式进行化简,化简到一个可以使用现有知识进行解决的一个过程!菜的扣脚...... ...

  9. HDU 2256 Problem of Precision (矩阵乘法)

    Problem of Precision Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. 刀片服务器和磁盘阵列卡(RAID)技术---永和维护(转)

    近期客户需要更换服务器,客户把买好的服务器送来了,原本感觉很小的一个服务器,可当我看到的时候是一个大个的又长又宽,类似机房服务器的那种,后来米老师给大致讲解一番:这个是刀片服务器. 刀片服务器是指在标 ...

  2. 带"叉叉"的GridView

    由于需要用到“删除图片”的功能,需要写这样一个小demo: 对之前博文的修改 发现imageView监听点击事件 效果实在不敢恭维,因此换个方式:设置Touch的监听函数, 下面的Demo没有改过来哈 ...

  3. Java从零开始学七(选择结构)

    一. 程序的结构: 一般来说程序的结构包含有下面三种: 1.顺序结构 2.选择结构 3.循环结构 二.顺序结构 程序至上而下逐行执行,一条语句执行完之后继续执行下一条语句,一直到程序的末尾

  4. 算法笔记_195:历届试题 错误票据(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 某涉密单位下发了某种票据,并要在年终全部收回. 每张票据有唯一的ID号.全年所有票据的ID号是连续的,但ID的开始数码是随机选定的. 因为 ...

  5. J2EE项目集成SAP的BO报表

    网上的方案: 每个用户在自己的J2EE系统的用户登陆的同时登陆bo系统,这做法的缺点是登陆bo速度慢,而且如果J2EE用户比较多的话会在bo服务器生成很多的token. 最佳方案(自己研究): 1.调 ...

  6. c语言入门经典(第5版)

    文章转载:http://mrcaoyc.blog.163.com/blog/static/23939201520159135915734 文件大小:126MB 文件格式:PDF    [点击下载] C ...

  7. Android网络开发之WIFI

    WIFI全称Wireless Fidelity, 又称802.11b标准.WIFI联盟成立于1999年,当时的名称叫做Wireless Ethernet Compatibility Alliance( ...

  8. (二)Activiti之——activiti数据库表介绍

    1. 数据库表的命名 Activiti的表都以ACT_开头. 第二部分是表示表的用途的两个字母标识. 用途也和服务的API对应. ACT_RE_*: 'RE'表示repository. 这个前缀的表包 ...

  9. 基于docker的centos:latest镜像制作nginx的镜像

    Dockerfile和nginx.repo在同一目录下 先创建nginx.repo [root@localhost nginx]# cat nginx.repo [nginx] name=nginx ...

  10. <%@ include file="">和<jsp:include file="">区别

    <%@include file="a.jsp"%>是在编译时加入,所谓静态,就是在编译的时候将jsp的代码加入进来再编译,之后运行. <jsp:include p ...