python 中的queue, deque
创建双向队列
import collections
d = collections.deque()
append(往右边添加一个元素)

import collections
d = collections.deque()
d.append(1)
d.append(2)
print(d) #输出:deque([1, 2])

appendleft(往左边添加一个元素)

import collections
d = collections.deque()
d.append(1)
d.appendleft(2)
print(d) #输出:deque([2, 1])

clear(清空队列)

import collections
d = collections.deque()
d.append(1)
d.clear()
print(d) #输出:deque([])

copy(浅拷贝)

import collections
d = collections.deque()
d.append(1)
new_d = d.copy()
print(new_d) #输出:deque([1])

count(返回指定元素的出现次数)

import collections
d = collections.deque()
d.append(1)
d.append(1)
print(d.count(1)) #输出:2

extend(从队列右边扩展一个列表的元素)

import collections
d = collections.deque()
d.append(1)
d.extend([3,4,5])
print(d) #输出:deque([1, 3, 4, 5])

extendleft(从队列左边扩展一个列表的元素)

import collections
d = collections.deque()
d.append(1)
d.extendleft([3,4,5])
print(d)
#
# #输出:deque([5, 4, 3, 1])

index(查找某个元素的索引位置)

import collections
d = collections.deque()
d.extend(['a','b','c','d','e'])
print(d)
print(d.index('e'))
print(d.index('c',0,3)) #指定查找区间 #输出:deque(['a', 'b', 'c', 'd', 'e'])
# 4
# 2

insert(在指定位置插入元素)

import collections
d = collections.deque()
d.extend(['a','b','c','d','e'])
d.insert(2,'z')
print(d) #输出:deque(['a', 'b', 'z', 'c', 'd', 'e'])

pop(获取最右边一个元素,并在队列中删除)

import collections
d = collections.deque()
d.extend(['a','b','c','d','e'])
x = d.pop()
print(x,d) #输出:e deque(['a', 'b', 'c', 'd'])

popleft(获取最左边一个元素,并在队列中删除)

import collections
d = collections.deque()
d.extend(['a','b','c','d','e'])
x = d.popleft()
print(x,d) #输出:a deque(['b', 'c', 'd', 'e'])

remove(删除指定元素)

import collections
d = collections.deque()
d.extend(['a','b','c','d','e'])
d.remove('c')
print(d) #输出:deque(['a', 'b', 'd', 'e'])

reverse(队列反转)

import collections
d = collections.deque()
d.extend(['a','b','c','d','e'])
d.reverse()
print(d) #输出:deque(['e', 'd', 'c', 'b', 'a'])

rotate(把右边元素放到左边)

import collections
d = collections.deque()
d.extend(['a','b','c','d','e'])
d.rotate(2) #指定次数,默认1次
print(d) #输出:deque(['d', 'e', 'a', 'b', 'c'])

queue模块介绍
queue模块定义了下面的类和异常:
class queue.Queue(maxsize=0)

import queue
import time q = queue.Queue() #FIFO队列先进先出
q.put(2)
q.put(1)
q.put(3) while not q.empty():
next_item = q.get()
print(next_item)
time.sleep(1) 执行结果:
2
1
3

class queue.LifoQueue(maxsize=0)

import queue
import time q = queue.LifoQueue() #LIFO队列后进先出
q.put(2)
q.put(1)
q.put(3) while not q.empty():
next_item = q.get()
print(next_item)
time.sleep(1) 执行结果:
3
1
2

class queue.PriorityQueue(maxsize=0)

from queue import PriorityQueue
import time q = PriorityQueue() q.put((2, 'code'))
q.put((1, 'eat'))
q.put((3, 'sleep')) while not q.empty():
next_item = q.get()
print(next_item)
time.sleep(3) 执行结果:
(1, 'eat')
(2, 'code')
(3, 'sleep')

exception queue.Empty
exception queue.Full
Queue对象(Queue、LifoQueue或者PriorityQueue)提供了以下方法:
Queue.qsize()
返回队列的近似大小。注意,qsize() > 0并不能保证接下来的get()方法不被阻塞;同样,qsize() < maxsize也不能保证put()将不被阻塞。

import queue
import time q = queue.Queue() q.put(2)
q.put(1)
q.put(3)
q.put('python') print('queue long:%s'%q.qsize()) 执行结果:
queue long:4

Queue.empty()
如果队列是空的,则返回True,否则False。如果empty()返回True,并不能保证接下来的put()调用将不被阻塞。类似的,empty()返回False也不能保证接下来的get()调用将不被阻塞。

import queue q = queue.Queue()
que = queue.Queue() q.put(2)
q.put(1)
q.put(3)
q.put('python') print('q is empty? :%s'%q.empty())
print('que is empty? :%s'%que.empty())
执行结果:
q is empty? :False #队列不为空则返回False
que is empty? :True #队列未空则返回True

Queue.full()
如果队列满则返回True,否则返回False。如果full()返回True,并不能保证接下来的get()调用将不被阻塞。类似的,full()返回False也不能保证接下来的put()调用将不被阻塞。

import queue q = queue.Queue(maxsize=4)
que = queue.Queue() q.put(2)
q.put(1)
q.put(3)
q.put('python') print('q is full? :%s'%q.full())
print('que is full? :%s'%que.full())
执行结果:
q is full? :True
que is full? :False

Queue.put(item, block=True, timeout=None)
放item到队列中。如果block是True,且timeout是None,该方法将一直等待直到有队列有空余空间(默认block=True,timeout=None)。如果timeout是一个正整数,该方法则最多阻塞timeout秒并抛出Full异常。如果block是False并且队列满,则直接抛出Full异常(这时timeout将被忽略)。
block为True

import queue
import time q = queue.Queue(maxsize=2) #将q队列填满
q.put('python')
q.put('linux') print(time.ctime()) #打印当前时间
try: #捕获queue.Full异常
#q.put('shell', timeout=3) #默认block=True
#q.put('shell', True, timeout=3) #可以省略block=;直接写True;timeout=可以省略直接写3
q.put('shell', block=True, timeout=3) #q队列已满,再次将数据放入q中,将阻塞3s后抛出异常queue.Full
except queue.Full:
print('queue is full!')
print(time.ctime()) #打印当前时间,可看出q队列阻塞时长
执行结果:
Fri Nov 3 15:06:43 2017
queue is full!
Fri Nov 3 15:06:46 2017

block为False

import queue
import time q = queue.Queue(maxsize=2) #将q队列填满
q.put('python')
q.put('linux') print(time.ctime()) #打印当前时间
try: #捕获queue.Full异常
q.put('shell', False, timeout=3) #block为False时,timeout失效会立即抛出queue.Full异常;故timeout选项可以省略不写
except queue.Full:
print('queue is full!')
print(time.ctime()) #打印当前时间,可看出q队列阻塞时长 执行结果:
Queue.put_nowait(item)
等价于put(item, False)。
Queue.get(block=True, timeout=None)
从队列中移除被返回一个条目。如果block是True并且timeout是None(默认block=True,timeout=None),该方法将阻塞直到队列中有条目可用。如果timeout是正整数,该方法将最多阻塞timeout秒并抛出Empty异常。如果block是False并且队列为空,则直接抛出Empty异常(这时timeout将被忽略)。
block为True

import queue
import time q = queue.Queue(maxsize=2) #当前q队列填为空
print(time.ctime()) #打印当前时间
try: #捕获queue.Empty异常
q.get(True, 5) #Queue.get()获取数据阻塞5s
except queue.Empty:
print('queue is empty!')
print(time.ctime()) #打印当前时间,可看出q队列阻塞时长
执行结果:
block为False

import queue
import time q = queue.Queue(maxsize=2) #当前q队列填为空
print(time.ctime()) #打印当前时间
try: #捕获queue.Empty异常
#q.get(False, 5) #Queue.get()获取数据阻塞5s,block=/timeout=可以省略;block=False时timeout可以省略
q.get(False)
except queue.Empty:
print('queue is empty!')
print(time.ctime()) #打印当前时间,可看出q队列阻塞时长
执行结果:
Fri Nov 3 15:38:23 2017
queue is empty!
Fri Nov 3 15:38:23 2017

Queue.get_nowait()
等价于get(False)。
Queue.task_done()
表示一个先前的队列中的任务完成了。被队列消费者线程使用。对于每个get()获取到的任务,接下来的task_done()的调用告诉队列该任务的处理已经完成。
如果join()调用正在阻塞,当队列中所有的条目被处理后它将恢复执行(意味着task_done()调用将被放入队列中的每个条目接收到)。
如果调用次数超过了队列中放置的条目数目,将抛出ValueError异常。
Queue.join()
当一个条目被增加到队列时,未完成任务的计数将增加。当一个消费者线程调用task_done()时,未完成任务的计数将减少。当未完成任务的计数减少到0时,join()解锁。

#!/usr/bin/env python3 import queue
import time
import subprocess
import threading q = queue.Queue()
hosts = ['192.168.1.68', '192.168.1.118', '192.168.1.101', '192.168.1.250', '192.168.1.133'] def run():
while True: #防止线程少于len(hosts)时卡死,不用while循环线程数少时就会导致队列数据无法全部取完,就会造成queue.join()一直阻塞状态
host = q.get()
if host == '192.168.1.118': #如果ip等于192.168.1.118就休眠10S,用于判读queue.join()是否阻塞直到queue.task_doen()通知后接触阻塞
time.sleep(10)
print('host ip is:%s'% host)
q.task_done() #当前线程任务完成 def main():
for i in range(10):
t = threading.Thread(target=run)
t.setDaemon(True)
t.start() for item in hosts:
q.put(item) q.join() #阻塞直至所有线程queue.task_done()返回 start = time.time()
main()
print("Elapsed Time: %s" % (time.time() - start))
执行结果:
host ip is:192.168.88.68
host ip is:192.168.68.101
host ip is:192.168.66.250
host ip is:192.168.88.133
host ip is:192.168.88.118
Elapsed Time: 10.013836145401001 #由于192.168.1.118大约阻塞了10S

python 中的queue, deque的更多相关文章
- python中的Queue
一.先说说Queue(队列对象) Queue是python中的标准库,可以直接import 引用,之前学习的时候有听过著名的“先吃先拉”与“后吃先吐”,其实就是这里说的队列,队列的构造的时候可以定义它 ...
- python中的Queue(队列)详解
一.Queue简介 python中的队列分类可分为两种: 1.线程Queue,也就是普通的Queue 2.进程Queue,在多线程与多进程会介绍. Queue的种类: FIFO: Queue.Que ...
- python 中的queue 与多进程--待继续
一.先说说Queue(队列对象) Queue是python中的标准库,可以直接import 引用,之前学习的时候有听过著名的“先吃先拉”与“后吃先吐”,其实就是这里说的队列,队列的构造的时候可以定义它 ...
- python中的Queue模块
queue介绍 queue是python的标准库,俗称队列.可以直接import引用,在python2.x中,模块名为Queue.python3直接queue即可 在python中,多个线程之间的数据 ...
- python中基于queue的打印机仿真算法
使用打印机的模型是queue中最经典的应用之一,这里就回顾一下queue在这里的使用方法和 起的重要作用. 为了仿真打印状态,这里需要把真实环境中的三个物理模型要建模出来,分别是:打印者,打印 任务, ...
- python中使用queue实现约瑟夫环(约瑟夫问题)求解
约瑟夫问题:是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围. 从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列: 依 ...
- 练习--python中的Queue与多进程(multiprocessing)
按官方说法: This module is OBSOLETE and is only provided on PyPI to support old projects that still use i ...
- Python中模块之queue的功能介绍
模块之queue的功能介绍 队列的分类: 队列主要要分为两种 1.双向队列 2.单项队列 1. 单项队列 创建单项队列 格式:queue.Queue(obj) 例如:que = queue.Queue ...
- java/python中的队列
Queue<TreeNode> que=new LinkedList<>(); 用linkedlist实现队列,offer,poll进出队列,peek对列顶部元素 python ...
随机推荐
- 2-Seventh Scrum Meeting20151207
任务分配 闫昊: 今日完成:完成数据库设计. 明日任务:和唐彬讨论接口如何在android实现. 唐彬: 今日完成:读了IOS讨论区后台接口. 明日任务:和闫昊讨论接口如何在android实现. 史烨 ...
- sampleFactory(女娲造人)
使用简单工厂模式模拟女娲(Nvwa)造人(Person),如果传入参数M,则返回一个Man对象,如果传入参数W,则返回一个Woman对象,如果传入参数R,则返回一个Robot对象. package c ...
- 使用 java 实现一个简单的 markdown 语法解析器
1. 什么是 markdown Markdown 是一种轻量级的「标记语言」,它的优点很多,目前也被越来越多的写作爱好者,撰稿者广泛使用.看到这里请不要被「标记」.「语言」所迷惑,Markdown 的 ...
- AngularJs 学习 (二)
紧接着第一部分: 推荐阅读: http://adrianmejia.com/blog/2014/10/03/mean-stack-tutorial-mongodb-expressjs-angularj ...
- IT行业的个人见解
IT这个行业是近代历史上的新新行业,它的就业前景是非常的好的,就业率高,但是这个行业的需求人才精英不是那些半桶水的所谓IT男.我现在学习的是计算机专业中的软件工程目标是成为一名合格的软件工程师,软件工 ...
- pygame学习笔记(6)——一个超级简单的游戏
转载请注明:@小五义 http://www.cnblogs.com/xiaowuyi 学了这么长时间的Pygame,一直想写个游戏实战一下.看起来很简单的游戏,写其来怎么这么难.最初想写个俄罗斯方块 ...
- [学习]Windows server 使用控制台时容易卡死的解决方法
公司使用Windows server 下面的 cmd 命令行 控制台打开某一个 bat 文件的方式 进行后台使用.. 但是经常发现在winserver 2016 时 遇到卡死的情况, 今天中午我再进行 ...
- RHEL/Centos下Sendmail服务器搭建
目的 Linux下配置Sendmail服务器,并通过客户端验证. 环境 Cento6 局域网(可访问互联网) 内容 配置Sendmail服务器,使得客户端能够通过foxmail或者outlook ex ...
- python利用unittest测试框架组织测试用例的5种方法
利用unittest测试框架可以编写测试用例,执行方式分两大类:利用main方法和利用testsuite,其中利用测试套件来组织测试用例可以有4种写法. 在此之前,先了解几个概念 TestCase:所 ...
- matlab中 assert(any(mask(:)));
首先,matlab中any函数:检测矩阵mask中是否有非零元素,如果有,返回1,:如果没有非零元素,即所有元素都是0,那么则返回0. assert()是一个调试程序时经常使用的宏,在程序运行时它计算 ...