一、题目

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

二、思路

二、思路&心得

  • POJ-3169:查分约束系统,利用约束条件,将问题转化为最短路径问题,并利用Bellman-Ford或SPFA算法求解
  • 本题需要考虑边的方向关系,虽然感觉是无向图,但是最后却还是初始化成有向图

三、代码

#include<cstdio>
#include<climits>
#include<algorithm>
#define MAX_N 10005
#define MAX_M 30005
#define MAX_D 2000005
using namespace std; int N, ML, MD; int A, B, D; int dist[MAX_N]; struct Edge {
int from;
int to;
int cost;
} E[MAX_M]; int Bellman_Ford(int s) {
for (int i = 1; i <= N; i ++) {
dist[i] = MAX_D;
}
dist[s] = 0;
int edgeNum = ML + MD + N - 1;
for (int i = 0; i < N; i ++) {
for (int j = 0; j < edgeNum; j ++) {
if (dist[E[j].from] + E[j].cost < dist[E[j].to]) {
if (i == N - 1) return -1;
dist[E[j].to] = dist[E[j].from] + E[j].cost;
}
}
}
return dist[N] == MAX_D ? -2 : dist[N];
} void solve() {
/**
* 图的初始化
*/
for (int i = 0; i < ML; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[i].from = A, E[i].to = B, E[i].cost = D;
}
for (int i = 0; i < MD; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[ML + i].from = B, E[ML + i].to = A, E[ML + i].cost = -D;
}
for (int i = 0; i < N - 1; i ++) {
E[ML + MD + i].from = i + 2, E[ML + MD + i].to = i + 1, E[ML + MD + i].cost = 0;
}
printf("%d\n", Bellman_Ford(1));
} int main() {
while (~scanf("%d %d %d", &N, &ML, &MD)) {
solve();
}
return 0;
} x ​

【图论】POJ-3169 差分约束系统的更多相关文章

  1. POJ - 3169 差分约束

    题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如         果最大距离无限大则输出 ...

  2. Intervals poj 1201 差分约束系统

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22503   Accepted: 8506 Descri ...

  3. POJ 3159 Candies (图论,差分约束系统,最短路)

    POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...

  4. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  5. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

  6. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  7. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  8. 【POJ 1716】Integer Intervals(差分约束系统)

    id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS   Memory L ...

  9. 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)

    [POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS   Memory Limit: 10 ...

随机推荐

  1. Linux基础入门 第二章 Linux终端和shell

    Linux终端 进入编辑IP地址命令:vi /etc/sysconfig/network-scripts/ifcfg-eth0 按键“i”:进行编辑 按键“ESC”:退出编辑  按键“:”:输入wq, ...

  2. bootstrap-treeview使用

    1.数据 var tree = [{ text: "车型A", nodes: [{ text: "车系1", }, { text: "车系2" ...

  3. Ajax第一天——入门与基本概念

    什么是Ajax Ajax被认为是(Asynchronous JavaScript and XML的缩写).异步的js和xml 异步和同步:同步->类似打电话,接完一个再接下一个:异步:-> ...

  4. 20155306 白皎 《网络攻防》 Exp2 后门原理与实践

    20155306 白皎 <网络攻防> Exp2 后门原理与实践 一.实践基础 后门程序又称特洛伊木马,其用途在于潜伏在电脑中,从事搜集信息或便于黑客进入的动作.后程序和电脑病毒最大的差别, ...

  5. caffe windows编译

    MicroSoft维护的caffe已经作为官方的caffe分支了,编译方式也改了,刚好最近重装了一次caffe windows, 记录一下里面的坑 https://github.com/BVLC/ca ...

  6. cocos creator踩坑日记

    踩坑一 问题:项目在构建成Web Mobile后运行在浏览器和微信中,点击页面任何地方都会导致自动全屏 解决:在构建之后的main.js中,去掉 cc.view.enableAutoFullScree ...

  7. JAVA的关键特性

    Java团队对设计Java时的关键考虑因素进行了总结,关键特性包含以下列表: 简单性 安全性 可移植性 面向对象 健壮性 多线程 体系结构中立 解释执行 高性能 分布式 动态性 简单性 Java的设计 ...

  8. php常用的魔术方法

    __construct:构造函数,一旦创建对象都就会自动调用 __call:当调用了未定义的方法时会自动触发 __set:当给类外部不可访问的属性设置值时会自动触发 __get:当获取类外部不可访问的 ...

  9. Linux常用压缩解压命令

    tar命令 解包:tar zxvf FileName.tar 打包:tar czvf FileName.tar DirName gz命令 解压1:gunzip FileName.gz 解压2:gzip ...

  10. HDFS文件系统基础

    HDFS架构实现 Hadoop当前稳定版本是Apache Hadoop 2.9.2,最新版本是Apache Hadoop 3.1.1. http://hadoop.apache.org/docs/ H ...