【图论】POJ-3169 差分约束系统
一、题目
Description
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
二、思路
二、思路&心得
- POJ-3169:查分约束系统,利用约束条件,将问题转化为最短路径问题,并利用Bellman-Ford或SPFA算法求解
- 本题需要考虑边的方向关系,虽然感觉是无向图,但是最后却还是初始化成有向图
三、代码
#include<cstdio>
#include<climits>
#include<algorithm>
#define MAX_N 10005
#define MAX_M 30005
#define MAX_D 2000005
using namespace std;
int N, ML, MD;
int A, B, D;
int dist[MAX_N];
struct Edge {
int from;
int to;
int cost;
} E[MAX_M];
int Bellman_Ford(int s) {
for (int i = 1; i <= N; i ++) {
dist[i] = MAX_D;
}
dist[s] = 0;
int edgeNum = ML + MD + N - 1;
for (int i = 0; i < N; i ++) {
for (int j = 0; j < edgeNum; j ++) {
if (dist[E[j].from] + E[j].cost < dist[E[j].to]) {
if (i == N - 1) return -1;
dist[E[j].to] = dist[E[j].from] + E[j].cost;
}
}
}
return dist[N] == MAX_D ? -2 : dist[N];
}
void solve() {
/**
* 图的初始化
*/
for (int i = 0; i < ML; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[i].from = A, E[i].to = B, E[i].cost = D;
}
for (int i = 0; i < MD; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[ML + i].from = B, E[ML + i].to = A, E[ML + i].cost = -D;
}
for (int i = 0; i < N - 1; i ++) {
E[ML + MD + i].from = i + 2, E[ML + MD + i].to = i + 1, E[ML + MD + i].cost = 0;
}
printf("%d\n", Bellman_Ford(1));
}
int main() {
while (~scanf("%d %d %d", &N, &ML, &MD)) {
solve();
}
return 0;
} x
【图论】POJ-3169 差分约束系统的更多相关文章
- POJ - 3169 差分约束
题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如 果最大距离无限大则输出 ...
- Intervals poj 1201 差分约束系统
Intervals Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22503 Accepted: 8506 Descri ...
- POJ 3159 Candies (图论,差分约束系统,最短路)
POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...
- POJ 3169 Layout (差分约束系统)
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
- POJ 3169 Layout 差分约束系统
介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...
- 差分约束系统 + spfa(A - Layout POJ - 3169)
题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- 【POJ 1716】Integer Intervals(差分约束系统)
id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS Memory L ...
- 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)
[POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS Memory Limit: 10 ...
随机推荐
- python3安装crypto出错,及解决方法
首先我用的python3.5的版本 问题的由来,我想通过python去实现RSA加密算法时,破解某网站的js加密认证,网上说需要安装pycrypto,我就去进行pip安装了 pip install p ...
- 学习sbtenv
背景 最近由于工作需要, 我总是在不同的scala项目间流动开发. 这就遇到一个很棘手的问题, 这几个项目用的sbt版本不一致, 老项目用的是 sbt 0.13.15, 新项目用的是 sbt 1.0. ...
- C++_编写动态链接库
原文:http://blog.csdn.net/a7055117a/article/details/47733247 动态链接库简介 动态链接库(Dynamic Link Library 或者 Dyn ...
- 20155327实验一 Java开发环境的熟悉
20155327实验一 Java开发环境的熟悉 实验内容 1.使用JDK编译.运行简单的java程序 2.使用IDEA编辑.编译.运行.调试java程序 实验步骤 1.使用JDK编译.运行简单的jav ...
- 2_C语言中的数据类型 (七)类型限定
1.1 类型限定 1.1.1 const const是代表一个不能改变值的常量 1.1.2 volatile 代表变量是一个可能被CPU指令之外的地方改 ...
- SpringMVC 异常信息ASM ClassReader failed to parse class file的问题解决
1. 环境信息: Spring 3.2.0, JDK 1.8.0 2. 运行简单的程序,出现以下错误信息: 2. 运行简单的程序,出现以下错误信息: Caused by: org.spring ...
- 【RAC搭建报错】You need disks from at least two different failure groups, excluding quorum disks and quorum failure groups, to create a Disk Group with normal redundancy
报错: You need disks from at least two different failure groups, excluding quorum disks and quorum fai ...
- BootStap学习笔记(2)
学习该内容之前可能会用到的内容: css属性Font-Weight:如果数字为700就是加粗的.或者更粗的为bolder,更细的是lighter. html Cite标签定义文档的引用,默认字体以斜体 ...
- 如何创建XHTML表单
首先奉上本菜曾经的作业——一张模仿智联招聘中的注册表单.虽然没有加样式显得很难看,但表单的基本要素已经具备了. 接下来进入正文,开始介绍各表单元素 form标签: 在创建表单时,第一步就是form标签 ...
- JDBC多表操作
一.一对多关系:部门管理系统 1.数据库 create table department ( id ) primary key, name ) ); create table employee ( i ...