一、题目

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

二、思路

二、思路&心得

  • POJ-3169:查分约束系统,利用约束条件,将问题转化为最短路径问题,并利用Bellman-Ford或SPFA算法求解
  • 本题需要考虑边的方向关系,虽然感觉是无向图,但是最后却还是初始化成有向图

三、代码

#include<cstdio>
#include<climits>
#include<algorithm>
#define MAX_N 10005
#define MAX_M 30005
#define MAX_D 2000005
using namespace std; int N, ML, MD; int A, B, D; int dist[MAX_N]; struct Edge {
int from;
int to;
int cost;
} E[MAX_M]; int Bellman_Ford(int s) {
for (int i = 1; i <= N; i ++) {
dist[i] = MAX_D;
}
dist[s] = 0;
int edgeNum = ML + MD + N - 1;
for (int i = 0; i < N; i ++) {
for (int j = 0; j < edgeNum; j ++) {
if (dist[E[j].from] + E[j].cost < dist[E[j].to]) {
if (i == N - 1) return -1;
dist[E[j].to] = dist[E[j].from] + E[j].cost;
}
}
}
return dist[N] == MAX_D ? -2 : dist[N];
} void solve() {
/**
* 图的初始化
*/
for (int i = 0; i < ML; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[i].from = A, E[i].to = B, E[i].cost = D;
}
for (int i = 0; i < MD; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[ML + i].from = B, E[ML + i].to = A, E[ML + i].cost = -D;
}
for (int i = 0; i < N - 1; i ++) {
E[ML + MD + i].from = i + 2, E[ML + MD + i].to = i + 1, E[ML + MD + i].cost = 0;
}
printf("%d\n", Bellman_Ford(1));
} int main() {
while (~scanf("%d %d %d", &N, &ML, &MD)) {
solve();
}
return 0;
} x ​

【图论】POJ-3169 差分约束系统的更多相关文章

  1. POJ - 3169 差分约束

    题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如         果最大距离无限大则输出 ...

  2. Intervals poj 1201 差分约束系统

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22503   Accepted: 8506 Descri ...

  3. POJ 3159 Candies (图论,差分约束系统,最短路)

    POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...

  4. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  5. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

  6. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  7. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  8. 【POJ 1716】Integer Intervals(差分约束系统)

    id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS   Memory L ...

  9. 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)

    [POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS   Memory Limit: 10 ...

随机推荐

  1. 在线调整InnoDB Buffer Pool Size

    InnoDB Buffer Pool主要是用来缓存数据表和索引数据的内存区域,它的默认值为134217728字节(128MB).最大值取决于CPU架构;32位系统上的最大值为4294967295(23 ...

  2. jQuery----选择器(重点是层次选择器)

    基本选择器 1.id选择器  ---------------------------->根据id来获取,只有一个.---------------------------------------- ...

  3. caffe windows编译

    MicroSoft维护的caffe已经作为官方的caffe分支了,编译方式也改了,刚好最近重装了一次caffe windows, 记录一下里面的坑 https://github.com/BVLC/ca ...

  4. 洛咕 P3961 [TJOI2013]黄金矿工

    甚至都不是树形背包= = 把每条线抠出来,这一条线就是个链的依赖关系,随便背包一下 // luogu-judger-enable-o2 #include<bits/stdc++.h> #d ...

  5. 扩展gcd算法

    扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x ...

  6. JetBrains全家桶使用攻略

    JetBrains全家桶使用攻略 今天狠狠心某宝买了一个key,可以使用15款开发软件,在此进行记录. 全家桶链接:https://www.jetbrains.com/products.html?fr ...

  7. C# 代码备份数据库 ,不需要 其他 DLL

    protected void Button1_Click(object sender, EventArgs e)    {        ///        ///备份方法        ///  ...

  8. IEEE1588 verision 2 报文介绍

    PTP 报文 PTP verision 2 报文是由 报头 / header,主体 / body 和 报尾 / suffix 组成,报尾长度可能为 0 ; PTP verision 2 报文在 ver ...

  9. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  10. IPC_Binder_java_2

    title: IPC_Binder_java_2 date: 2017-07-04 14:47:55 tags: [IPC,Binder] categories: [Mobile,Android] - ...