一、题目

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

二、思路

二、思路&心得

  • POJ-3169:查分约束系统,利用约束条件,将问题转化为最短路径问题,并利用Bellman-Ford或SPFA算法求解
  • 本题需要考虑边的方向关系,虽然感觉是无向图,但是最后却还是初始化成有向图

三、代码

#include<cstdio>
#include<climits>
#include<algorithm>
#define MAX_N 10005
#define MAX_M 30005
#define MAX_D 2000005
using namespace std; int N, ML, MD; int A, B, D; int dist[MAX_N]; struct Edge {
int from;
int to;
int cost;
} E[MAX_M]; int Bellman_Ford(int s) {
for (int i = 1; i <= N; i ++) {
dist[i] = MAX_D;
}
dist[s] = 0;
int edgeNum = ML + MD + N - 1;
for (int i = 0; i < N; i ++) {
for (int j = 0; j < edgeNum; j ++) {
if (dist[E[j].from] + E[j].cost < dist[E[j].to]) {
if (i == N - 1) return -1;
dist[E[j].to] = dist[E[j].from] + E[j].cost;
}
}
}
return dist[N] == MAX_D ? -2 : dist[N];
} void solve() {
/**
* 图的初始化
*/
for (int i = 0; i < ML; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[i].from = A, E[i].to = B, E[i].cost = D;
}
for (int i = 0; i < MD; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[ML + i].from = B, E[ML + i].to = A, E[ML + i].cost = -D;
}
for (int i = 0; i < N - 1; i ++) {
E[ML + MD + i].from = i + 2, E[ML + MD + i].to = i + 1, E[ML + MD + i].cost = 0;
}
printf("%d\n", Bellman_Ford(1));
} int main() {
while (~scanf("%d %d %d", &N, &ML, &MD)) {
solve();
}
return 0;
} x ​

【图论】POJ-3169 差分约束系统的更多相关文章

  1. POJ - 3169 差分约束

    题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如         果最大距离无限大则输出 ...

  2. Intervals poj 1201 差分约束系统

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22503   Accepted: 8506 Descri ...

  3. POJ 3159 Candies (图论,差分约束系统,最短路)

    POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...

  4. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  5. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

  6. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  7. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  8. 【POJ 1716】Integer Intervals(差分约束系统)

    id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS   Memory L ...

  9. 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)

    [POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS   Memory Limit: 10 ...

随机推荐

  1. C语言学习记录_2019.02.07

    C99开始,可以用变量来定义数组的大小:例如,利用键盘输入的变量来定义数组大小: 赋值号左边的值叫做左值: 关于数组:编译器和运行环境不会检查数组下标是否越界,无论读还是写. 越界数组可能造成的问题提 ...

  2. Scala(四):对象

    对象:Object 1.单例对象 2.伴生对象 3.扩展类或特质的对象 4.apply方法 5.应用程序对象 6.枚举1.单例对象 Scala中没有你静态方法或静态字段,可以用object这个语法结构 ...

  3. 2017-2018-2 20155315《网络对抗技术》Exp1:PC平台逆向破解

    实验目的 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShe ...

  4. mfc 带参数的构造函数

    知识点 默认的构造函数 带参数的构造函数 重载构造函数 一.默认的构造函数 二.带参数的构造函数 三.重载构造函数 class Tdate { public: int year;//年 int mon ...

  5. c++ 菜单动态效果

    #include <stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h> ...

  6. 【转载】COM 组件设计与应用(八)——实现多接口

    原文:http://vckbase.com/index.php/wv/1219.html 一.前言 从第五回开始到第七回,咱们用 ATL 写了一个简单的 COM 组件,之所以说简单,是因为在组件中,只 ...

  7. 4552: [Tjoi2016&Heoi2016]排序

    4552: [Tjoi2016&Heoi2016]排序 链接 分析: 因为只询问一次,所以考虑二分这个数.显然是没有单调性的,但是我们可以二分所有大于等于mid的数中,是否有满足条件的x(而不 ...

  8. underscore.js 分析6 map函数

    作用:通过转换函数(iteratee迭代器)映射列表中的每个值产生价值的新数组.iteratee传递三个参数:value,然后是迭代 index. _.map([1, 2, 3], function( ...

  9. 洛咕 P3338 [ZJOI2014]力

    好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化 ...

  10. JAVA 调用gc机制强制删除文件

    在删除文件前调用System.gc()方法,也就是垃圾回收机制,即可成功删除被JAVA虚拟机占用的文件.