【图论】POJ-3169 差分约束系统
一、题目
Description
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
二、思路
二、思路&心得
- POJ-3169:查分约束系统,利用约束条件,将问题转化为最短路径问题,并利用Bellman-Ford或SPFA算法求解
- 本题需要考虑边的方向关系,虽然感觉是无向图,但是最后却还是初始化成有向图
三、代码
#include<cstdio>
#include<climits>
#include<algorithm>
#define MAX_N 10005
#define MAX_M 30005
#define MAX_D 2000005
using namespace std;
int N, ML, MD;
int A, B, D;
int dist[MAX_N];
struct Edge {
int from;
int to;
int cost;
} E[MAX_M];
int Bellman_Ford(int s) {
for (int i = 1; i <= N; i ++) {
dist[i] = MAX_D;
}
dist[s] = 0;
int edgeNum = ML + MD + N - 1;
for (int i = 0; i < N; i ++) {
for (int j = 0; j < edgeNum; j ++) {
if (dist[E[j].from] + E[j].cost < dist[E[j].to]) {
if (i == N - 1) return -1;
dist[E[j].to] = dist[E[j].from] + E[j].cost;
}
}
}
return dist[N] == MAX_D ? -2 : dist[N];
}
void solve() {
/**
* 图的初始化
*/
for (int i = 0; i < ML; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[i].from = A, E[i].to = B, E[i].cost = D;
}
for (int i = 0; i < MD; i ++) {
scanf("%d %d %d", &A, &B, &D);
if (A > B) swap(A, B);
E[ML + i].from = B, E[ML + i].to = A, E[ML + i].cost = -D;
}
for (int i = 0; i < N - 1; i ++) {
E[ML + MD + i].from = i + 2, E[ML + MD + i].to = i + 1, E[ML + MD + i].cost = 0;
}
printf("%d\n", Bellman_Ford(1));
}
int main() {
while (~scanf("%d %d %d", &N, &ML, &MD)) {
solve();
}
return 0;
} x
【图论】POJ-3169 差分约束系统的更多相关文章
- POJ - 3169 差分约束
题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如 果最大距离无限大则输出 ...
- Intervals poj 1201 差分约束系统
Intervals Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22503 Accepted: 8506 Descri ...
- POJ 3159 Candies (图论,差分约束系统,最短路)
POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...
- POJ 3169 Layout (差分约束系统)
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
- POJ 3169 Layout 差分约束系统
介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...
- 差分约束系统 + spfa(A - Layout POJ - 3169)
题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- 【POJ 1716】Integer Intervals(差分约束系统)
id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS Memory L ...
- 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)
[POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS Memory Limit: 10 ...
随机推荐
- 微信支付JsApi 40163错误
微信支付JsApi 40163错误错误:未定义数组索引:openid .经过检查发现是 :微信支付授权获取 openId {“errcode”:40163,“errmsg”:“code been us ...
- Memcached 集群架构问题归纳
集群架构方面的问题o memcached是怎么工作的?o memcached最大的优势是什么?o memcached和MySQL的query cache相比,有什么优缺点?o memcached和服务 ...
- git push 每次都要输入用户名密码
添加远程库的时候使用了https的方式..所以每次都要用https的方式push到远程库,速度还慢.. 查看使用的传输协议: git remote -v 重新设置成ssh的方式: git remote ...
- 微信小程序:text元素中加入空格
在text标签中加入 decode = "{{true}}" ,然后字啊需要加入空格的地方使用 即可加入一个空格,可以连续用多个例如: <text decode = &q ...
- Codeforces 937 D. Sleepy Game(DFS 判断环)
题目链接: Sleepy Game 题意: Petya and Vasya 在玩移动旗子的游戏, 谁不能移动就输了. Vasya在订移动计划的时候睡着了, 然后Petya 就想趁着Vasya睡着的时候 ...
- 洛咕 P3961 [TJOI2013]黄金矿工
甚至都不是树形背包= = 把每条线抠出来,这一条线就是个链的依赖关系,随便背包一下 // luogu-judger-enable-o2 #include<bits/stdc++.h> #d ...
- JAVA 调用gc机制强制删除文件
在删除文件前调用System.gc()方法,也就是垃圾回收机制,即可成功删除被JAVA虚拟机占用的文件.
- CSS快速入门-定位布局(九宫格)
实现效果图: 看上去是不是很屌的样子?其实实现起来主要就是用到了一个float,不难. 实现步骤:1.新建一个大div,300*30002.里面放5个小div,100*1003.将div定位
- mybatis学习(一)-------XML 映射配置文件详解
XML 映射配置文件 MyBatis 的配置文件包含了会深深影响 MyBatis 行为的设置(settings)和属性(properties)信息.文档的顶层结构如下: configuration 配 ...
- How to: Display a Non-Persistent Object's List View from the Navigation
This example demonstrates how to display a non-persistent object's List View when a navigation item ...