最小二乘法least square
上研究生的时候接触的第一个Loss function就是least square。最近又研究了一下,做个总结吧。
定义看wiki就够了。公式如下
其中yy代表类标列向量,xx代表特征行向量,WW代表回归或者分类参数矩阵。通过令欧式距离最小化优化得到最优的WW。
我遇到的第一个问题是,这个公式是怎么得到的,motivation是什么。我个人倾向于最大似然这个角度来解释。具体如下:
假设回归或分类模型公式如下:
ϵ∼N(0,σ2)ϵ∼N(0,σ2)代表加性高斯噪声,所以y∼N(WTx,σ2)y∼N(WTx,σ2)。这时通过独立观测xx得到一系列的观测值X=(x1,y1)….,(xN,yN)X=(x1,y1)….,(xN,yN),则可写出对应的似然函数
两边同取自然对数,则
而N(WTx,σ2)=12πσ2√exp(−(y−WTx2)2σ2)N(WTx,σ2)=12πσ2exp(−(y−WTx)22σ2)
故
最大似然函数,求解W,
上式中第二项与WW无关,可以省略,故
把上式中的σ2σ2取掉,就是我们熟悉的最小二乘法啦。
求解时,对对数似然函数求偏导(注意矩阵求导的规则)
∇ln(p(y∣X,w,σ))=−∑Nn=1{yn−WTxn}xTn∇ln(p(y∣X,w,σ))=−∑n=1N{yn−WTxn}xnT 令上式为0,则有
两边同取矩阵的逆,则有: ∑Nn=1xnyTn=∑Nn=1xnxTnW∑n=1NxnynT=∑n=1NxnxnTW
如果用YY表示类标矩阵,XX表示特征矩阵,则有 XYT=XXTWXYT=XXTW W=(XXT)−1XYTW=(XXT)−1XYT
上面的公式称为normal equation。可以求得WW的封闭解,但是只要做过实验的都知道,如果XX的维数稍微一大,求逆的过程非常非常非常慢,且要消耗非常非常多的资源。所以WW一般用梯度下降法求解。
最大似然法在一定程度上证明了最小二乘法的合理性,但是事实上在历史上最小二乘的出现早于前者,所以可以从其它的角度思考一下最小二乘的合理性。比如最小二乘的几何意义,这篇文章讲的挺好的,看了之后受益匪浅。
from: http://bucktoothsir.github.io/blog/2015/12/04/leastsquare/
最小二乘法least square的更多相关文章
- 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Machine Learning Algorithms Study Notes(1)--Introduction
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1 Introduction 1 1.1 ...
- 对线性回归,logistic回归和一般回归的认识
原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 线性回归,logistic回归和一般回归
1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数 ...
- 【IUML】回归和梯度下降
回归(Regression) 在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如local ...
- 机器学习之线性回归---logistic回归---softmax回归
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...
- 对线性回归,logistic回归和一般回归
对线性回归,logistic回归和一般回归 [转自]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述 ...
随机推荐
- 基于Bootstrap的Asp.net Mvc 分页的实现
最近写了一个mvc 的 分页,样式是基于 bootstrap 的 ,提供查询条件,不过可以自己写样式根据个人的喜好,以此分享一下.首先新建一个Mvc 项目,既然是分页就需要一些数据,我这边是模拟了一些 ...
- 【Codechef】Random Number Generator(多项式除法)
题解 前置技能 1.多项式求逆 求\(f(x)\*g(x) \equiv 1 \pmod {x^{t}}\) 我们在t == 1时,有\(f[0] = frac{1}{g[0]}\) 之后呢,我们倍增 ...
- Ionic入门十:icon(图标)
ionic 也默认提供了许多的图标,大概有500多个.用法也非常的简单: <i class="icon ion-star"></i> 图标列表如下:   ...
- thinkphp和ueditor自定义后台处理方法整合
先了解一下ueditor后台请求参数与返回参数格式规范: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...
- PHP会话——模拟购物车的功能
1.php默认是不开启会话的,要使用会话用两种方法:(1)使用session_start();显示的开启会话.(2)在php.ini中找到如下的一行:找到session.auto_start = 0, ...
- poj-1251-最小生成树
title: poj-1251-最小生成树 date: 2018-11-20 16:38:14 tags: acm 刷题 categories: ACM-最小生成树 概述 前段时间数据结构的课上提到了 ...
- JDK源码分析(一)——ArrayList
目录 ArrayList分析 ArrayList继承结构 ArrayList字段属性 ArrayList构造函数 重要方法 ArrayList Iterator迭代器 总结 ArrayList分析 ...
- 同步VDP时间
使用yast 进入蓝屏界面,修改system—date and time,取消hardware clock set to utc,时区设置为上海或者北京,然后sntp -r 时间服务器地址 敲击syn ...
- 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存
使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...
- SQL Server中执行正则表达式
总体方案:写function,再执行update语句. 一.查询函数 -- ============================================= -- Author: <l ...