上研究生的时候接触的第一个Loss function就是least square。最近又研究了一下,做个总结吧。

定义看wiki就够了。公式如下

E(w)=12∑n=1N{y−xWT}2E(w)=12∑n=1N{y−xWT}2

其中yy代表类标列向量,xx代表特征行向量,WW代表回归或者分类参数矩阵。通过令欧式距离最小化优化得到最优的WW。

我遇到的第一个问题是,这个公式是怎么得到的,motivation是什么。我个人倾向于最大似然这个角度来解释。具体如下:

假设回归或分类模型公式如下:

y=WTx+ϵy=WTx+ϵ

ϵ∼N(0,σ2)ϵ∼N(0,σ2)代表加性高斯噪声,所以y∼N(WTx,σ2)y∼N(WTx,σ2)。这时通过独立观测xx得到一系列的观测值X=(x1,y1)….,(xN,yN)X=(x1,y1)….,(xN,yN),则可写出对应的似然函数

p(y∣X,w,σ)=ΠNn=1N(WTx,σ2)p(y∣X,w,σ)=Πn=1NN(WTx,σ2)

两边同取自然对数,则

ln(p(y∣X,w,σ))=∑i=1Nln(N(WTx,σ2))ln(p(y∣X,w,σ))=∑i=1Nln(N(WTx,σ2))

而N(WTx,σ2)=12πσ2√exp(−(y−WTx2)2σ2)N(WTx,σ2)=12πσ2exp⁡(−(y−WTx)22σ2)

ln(p(y∣X,w,σ))=−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)ln(p(y∣X,w,σ))=−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)

最大似然函数,求解W,

W∗=argminW−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)W∗=argminW−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)

上式中第二项与WW无关,可以省略,故

W∗=argminW−12σ2∑n=1N{yn−WTxn}2W∗=argminW−12σ2∑n=1N{yn−WTxn}2

把上式中的σ2σ2取掉,就是我们熟悉的最小二乘法啦。

求解时,对对数似然函数求偏导(注意矩阵求导的规则)

∇ln(p(y∣X,w,σ))=−∑Nn=1{yn−WTxn}xTn∇ln(p(y∣X,w,σ))=−∑n=1N{yn−WTxn}xnT 令上式为0,则有

∑n=1NynxTn=WT∑n=1NxnxTn∑n=1NynxnT=WT∑n=1NxnxnT

两边同取矩阵的逆,则有: ∑Nn=1xnyTn=∑Nn=1xnxTnW∑n=1NxnynT=∑n=1NxnxnTW

如果用YY表示类标矩阵,XX表示特征矩阵,则有 XYT=XXTWXYT=XXTW W=(XXT)−1XYTW=(XXT)−1XYT

上面的公式称为normal equation。可以求得WW的封闭解,但是只要做过实验的都知道,如果XX的维数稍微一大,求逆的过程非常非常非常慢,且要消耗非常非常多的资源。所以WW一般用梯度下降法求解。

最大似然法在一定程度上证明了最小二乘法的合理性,但是事实上在历史上最小二乘的出现早于前者,所以可以从其它的角度思考一下最小二乘的合理性。比如最小二乘的几何意义,这篇文章讲的挺好的,看了之后受益匪浅。

from: http://bucktoothsir.github.io/blog/2015/12/04/leastsquare/

最小二乘法least square的更多相关文章

  1. 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法

    1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...

  2. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  3. Machine Learning Algorithms Study Notes(1)--Introduction

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    ...

  4. 对线性回归,logistic回归和一般回归的认识

    原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 ...

  5. 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)

    版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...

  6. 线性回归,logistic回归和一般回归

    1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数 ...

  7. 【IUML】回归和梯度下降

    回归(Regression) 在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如local ...

  8. 机器学习之线性回归---logistic回归---softmax回归

    在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...

  9. 对线性回归,logistic回归和一般回归

    对线性回归,logistic回归和一般回归 [转自]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述 ...

随机推荐

  1. 【LOJ】#2061. 「HAOI2016」放棋子

    题解 水题,可惜要写高精度有点烦 一看障碍物的摆放方式和最后的答案没有关系,于是干脆不读了,直接二项式反演可以得到 设\(g_k\)为一种摆放方式恰好占了k个障碍物 \(f_k = \sum_{i = ...

  2. LoadRunner 一参多用

    LoadRunner参数化后的值在脚本中多处位置引用(LoadRunner 一参多用)   LoadRunner的参数化给了我们很多便利,但是当一个脚本中同一个值出现多处,并且值都是一致的.这个时候, ...

  3. Bootstrap进阶五:Web开发中很实用的交互效果积累

    1.页面切换效果 我们已经在示例中罗列了一组动画,可以被应用到页面切换过程中,创造出很有趣的导航效果.  2.视差滚动(parallax-slider) 视差滚动(parallax-slider)已 ...

  4. Bootstrap进阶四:jQuery插件详解

    一.模态对话框(Modal) 模态框经过了优化,更加灵活,以弹出对话框的形式出现,具有最小和最实用的功能集. 不支持同时打开多个模态框 千万不要在一个模态框上重叠另一个模态框.要想同时支持多个模态框, ...

  5. 2017-2018-1 20179202《Linux内核原理与分析》第七周作业

    一 .Linux内核创建一个新进程的过程 1. 知识准备 操作系统内核三大功能是进程管理,内存管理,文件系统,最核心的是进程管理 linux 进程的状态和操作系统原理的描述进程状态有所不同,比如就绪状 ...

  6. Java反射机制demo(七)—反射机制与工厂模式

    Java反射机制demo(七)—反射机制与工厂模式 工厂模式 简介 工厂模式是最常用的实例化对象模式. 工厂模式的主要作用就是使用工厂方法代替new操作. 为什么要使用工厂模式?直接new不好吗? 直 ...

  7. [BZOJ4771]七彩树(主席树)

    https://blog.csdn.net/KsCla/article/details/78249148 用类似经典的链上区间颜色计数问题的做法,这个题可以看成是询问DFS在[L[x],R[x]]中, ...

  8. Android之安全机制

    根据android四大框架来解说安全机制 代码安全 java不同于C/C++,java是解释性语言,存在代码被反编译的隐患: 默认混淆器为proguard,最新版本为4.7: proguard还可用来 ...

  9. [PA2014]Pakowanie

    [PA2014]Pakowanie 题目大意: \(n(n\le24)\)个物品和\(m(m\le100)\)个背包,每个物体有一个体积\(a_i\),每个背包有一个容量\(c_i\).问装完所有物品 ...

  10. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...