上研究生的时候接触的第一个Loss function就是least square。最近又研究了一下,做个总结吧。

定义看wiki就够了。公式如下

E(w)=12∑n=1N{y−xWT}2E(w)=12∑n=1N{y−xWT}2

其中yy代表类标列向量,xx代表特征行向量,WW代表回归或者分类参数矩阵。通过令欧式距离最小化优化得到最优的WW。

我遇到的第一个问题是,这个公式是怎么得到的,motivation是什么。我个人倾向于最大似然这个角度来解释。具体如下:

假设回归或分类模型公式如下:

y=WTx+ϵy=WTx+ϵ

ϵ∼N(0,σ2)ϵ∼N(0,σ2)代表加性高斯噪声,所以y∼N(WTx,σ2)y∼N(WTx,σ2)。这时通过独立观测xx得到一系列的观测值X=(x1,y1)….,(xN,yN)X=(x1,y1)….,(xN,yN),则可写出对应的似然函数

p(y∣X,w,σ)=ΠNn=1N(WTx,σ2)p(y∣X,w,σ)=Πn=1NN(WTx,σ2)

两边同取自然对数,则

ln(p(y∣X,w,σ))=∑i=1Nln(N(WTx,σ2))ln(p(y∣X,w,σ))=∑i=1Nln(N(WTx,σ2))

而N(WTx,σ2)=12πσ2√exp(−(y−WTx2)2σ2)N(WTx,σ2)=12πσ2exp⁡(−(y−WTx)22σ2)

ln(p(y∣X,w,σ))=−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)ln(p(y∣X,w,σ))=−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)

最大似然函数,求解W,

W∗=argminW−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)W∗=argminW−12σ2∑n=1N{yn−WTxn}2−12ln(2πσ2)

上式中第二项与WW无关,可以省略,故

W∗=argminW−12σ2∑n=1N{yn−WTxn}2W∗=argminW−12σ2∑n=1N{yn−WTxn}2

把上式中的σ2σ2取掉,就是我们熟悉的最小二乘法啦。

求解时,对对数似然函数求偏导(注意矩阵求导的规则)

∇ln(p(y∣X,w,σ))=−∑Nn=1{yn−WTxn}xTn∇ln(p(y∣X,w,σ))=−∑n=1N{yn−WTxn}xnT 令上式为0,则有

∑n=1NynxTn=WT∑n=1NxnxTn∑n=1NynxnT=WT∑n=1NxnxnT

两边同取矩阵的逆,则有: ∑Nn=1xnyTn=∑Nn=1xnxTnW∑n=1NxnynT=∑n=1NxnxnTW

如果用YY表示类标矩阵,XX表示特征矩阵,则有 XYT=XXTWXYT=XXTW W=(XXT)−1XYTW=(XXT)−1XYT

上面的公式称为normal equation。可以求得WW的封闭解,但是只要做过实验的都知道,如果XX的维数稍微一大,求逆的过程非常非常非常慢,且要消耗非常非常多的资源。所以WW一般用梯度下降法求解。

最大似然法在一定程度上证明了最小二乘法的合理性,但是事实上在历史上最小二乘的出现早于前者,所以可以从其它的角度思考一下最小二乘的合理性。比如最小二乘的几何意义,这篇文章讲的挺好的,看了之后受益匪浅。

from: http://bucktoothsir.github.io/blog/2015/12/04/leastsquare/

最小二乘法least square的更多相关文章

  1. 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法

    1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...

  2. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  3. Machine Learning Algorithms Study Notes(1)--Introduction

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    ...

  4. 对线性回归,logistic回归和一般回归的认识

    原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 ...

  5. 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)

    版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...

  6. 线性回归,logistic回归和一般回归

    1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数 ...

  7. 【IUML】回归和梯度下降

    回归(Regression) 在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如local ...

  8. 机器学习之线性回归---logistic回归---softmax回归

    在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...

  9. 对线性回归,logistic回归和一般回归

    对线性回归,logistic回归和一般回归 [转自]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述 ...

随机推荐

  1. Python爬虫个人记录(四)利用Python在豆瓣上写一篇日记

    涉及关键词:requests库 requests.post方法 cookies登陆 version 1.5(附录):使用post方法登陆豆瓣,成功! 缺点:无法获得登陆成功后的cookie,要使用js ...

  2. php 购物车实现购物的原理

    当用户进行购物时他有可能是本商电的会员或游客(非会员):因此得出两种方案: 方案一:(会员) 用户进行购物时他是我们本商店的会员(数据库中存在该用户的数据),当用户添加商品到购物车的时候我们可以分为两 ...

  3. TradingView 初识

    如引用 TradingView 库,需引入库中 3 个文件(所需库为 github 私有库,需申请) <script type="text/javascript" src=& ...

  4. 《Android源码设计模式》----面向对象六大原则

    1.单一职责原则 Single Respoonsibility Principle(SRP) --封装 2.开闭原则 Open Close Principle(OCP)--对扩展开放,对修改封闭 3. ...

  5. odoo基础数据加载

    odoo 基础数据加载 这里介绍的odoo基础数据加载分两种方式,一种是演示数据加载,一种是默认数据加载,下面就是详细介绍 首先,当然是创建一个date文件夹 项目目录,右键自定义一个文件夹 XML数 ...

  6. 移动端meta标签

    现在的手机或平板电脑等移动设备上的浏览器默认都有双击放大的设置,如何阻止双击放大?user-scalable=no <!-- 禁止缩放 --> <meta name=”viewpor ...

  7. .NET Core改造工程直播

    [背景] 新项目需要跨平台,原来积累的.NET类库需要改造为.NET Core. [直播] 新增加的项目不支持排除文件 不支持定义条件编译常量,虽然在项目中能使用#if语法,但无地方定义DefineC ...

  8. windows提权exp列表

    漏洞列表 #Security Bulletin #KB #Description #Operating System CVE-2017-0213 [Windows COM Elevation of P ...

  9. vijos 1880 变形最短路

    题意:Ninian 的魔力可以在结界间传递.结界中有 N 个光柱,第 i 个光柱的光压范围为 0~Ei .魔力可以有 M 种传递,从光柱 Ai 传递到光柱 Bi ,花费时间 Ti .当魔力从光压为 S ...

  10. Elasticsearch基础分布式架构

    写在前面的话:读书破万卷,编码如有神-------------------------------------------------------------------- 参考内容: <Ela ...