Stamps 

The government of Nova Mareterrania requires that various legal documents have stamps attached to them so that the government can derive revenue from them. In terms of recent legislation, each class of document is limited in the number of stamps that may be attached to it. The government wishes to know how many different stamps, and of what values, they need to print to allow the widest choice of values to be made up under these conditions. Stamps are always valued in units of $1.

This has been analysed by government mathematicians who have derived a formula for n(h,k), where h is the number of stamps that may be attached to a document, k is the number of denominations of stamps available, and n is the largest attainable value in a continuous sequence starting from $1. For instance, if h=3, k=2 and the denominations are $1 and $4, we can make all the values from $1 to $6 (as well as $8, $9 and $12). However with the same values of h and k, but using $1 and $3 stamps we can make all the values from $1 to $7 (as well as $9). This is maximal, so n(3,2) = 7.

Unfortunately the formula relating n(h,k) to hk and the values of the stamps has been lost--it was published in one of the government reports but no-one can remember which one, and of the three researchers who started to search for the formula, two died of boredom and the third took a job as a lighthouse keeper because it provided more social stimulation.

The task has now been passed on to you. You doubt the existence of a formula in the first place so you decide to write a program that, for given values of h and k, will determine an optimum set of stamps and the value of n(h,k).

Input

Input will consist of several lines, each containing a value for h and k. The file will be terminated by two zeroes (0 0). For technical reasons the sum of h and k is limited to 9. (The President lost his little finger in a shooting accident and cannot count past 9).

Output

Output will consist of a line for each value of h and k consisting of the k stamp values in ascending order right justified in fields 3 characters wide, followed by a space and an arrow (->) and the value of n(h,k) right justified in a field 3 characters wide.

Sample input

3 2
0 0

Sample output

  1  3 ->  7

题意:不好理解啊。。 还是看了别人题解上的题意才懂的。。给定h和k,h代表拥有的邮票张数,k代表有几种面值的邮票。。现在你要确定k个面值。来确保能组合成的连续邮票价值可以到最大。。不是很好理解

举下样例3 和 2.当邮票面值为1 3时。可以组成1 2 3 4 5 6 7 9.连续价值最大到7.所以输出7。假如取1 4.那么组成的为

1 2 3 4 5 6 8 9 12 连续最大到6.要输出较大,所以输出是 1 3-> 7。

思路:从题目中了看出必然有一个面值为1,不然1就组不成了。然后就可以以这个1作为起点。进行2层深搜。一层搜索当前价值能不能被组合成。。一层搜索当价值不能被组合成就添加一种面值。添加的面值区间为[当前能组成的最小面值+1,当前能组成的最大面值+1]。把这几种情况进行搜索。。知道面值数为k结束。

#include <stdio.h>
#include <string.h> int h, k;
int m[10];
int out[10];
int mnum;
int jud;
int maxx; void judge(int num, int mian, int money)
{
if (jud == 1)
return;
if (mian == money)
{
jud = 1;
return;
}
if (num == h)
return;
for (int i = 0; i < mnum; i ++)
{
judge(num + 1, mian + m[i], money);
}
} void f(int num, int money)
{
if (num == k)
{
if (maxx < money)
{
maxx = money;
for (int i = 0; i < k; i ++)
{
out[i] = m[i];
}
}
return;
}
jud = 0;
judge(0, 0, money);
if (jud)
{
f(num, money + 1);
}
else
{
for (int i = 2; i <= money; i ++)
{
m[mnum] = i;
mnum ++;
f(num + 1, money);
mnum --;
}
}
}
int main()
{
while (scanf("%d%d", &h, &k) != EOF && h && k)
{
memset(out, 0, sizeof(out));
memset(m, 0, sizeof(m));
maxx = 0;
m[0] = 1;
mnum = 1;
f(0, 1);
for (int i = 0; i < k; i ++)
printf("%3d", out[i]);
printf(" ->%3d\n", maxx - 1);
}
return 0;
}

UVA 165 Stamps (DFS深搜回溯)的更多相关文章

  1. PAT Advanced 1155 Heap Paths (30) [DFS, 深搜回溯,堆]

    题目 In computer science, a heap is a specialized tree-based data structure that satisfies the heap pr ...

  2. HDU5723 Abandoned country (最小生成树+深搜回溯法)

    Description An abandoned country has n(n≤100000) villages which are numbered from 1 to n. Since aban ...

  3. DFS深搜——Red and Black——A Knight&#39;s Journey

    深搜,从一点向各处搜找到全部能走的地方. Problem Description There is a rectangular room, covered with square tiles. Eac ...

  4. DFS 深搜专题 入门典例 -- 凌宸1642

    DFS 深搜专题 入门典例 -- 凌宸1642 深度优先搜索 是一种 枚举所有完整路径以遍历所有情况的搜索方法 ,使用 递归 可以很好的实现 深度优先搜索. 1 最大价值 题目描述 ​ 有 n 件物品 ...

  5. CodeM美团点评编程大赛初赛B轮 黑白树【DFS深搜+暴力】

    [编程题] 黑白树 时间限制:1秒 空间限制:32768K 一棵n个点的有根树,1号点为根,相邻的两个节点之间的距离为1.树上每个节点i对应一个值k[i].每个点都有一个颜色,初始的时候所有点都是白色 ...

  6. 深搜+回溯 POJ 2676 Sudoku

    POJ 2676 Sudoku Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17627   Accepted: 8538 ...

  7. ****Curling 2.0(深搜+回溯)

    Curling 2.0 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total ...

  8. 【DFS深搜初步】HDOJ-2952 Counting Sheep、NYOJ-27 水池数目

    [题目链接:HDOJ-2952] Counting Sheep Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  9. Red and Black(DFS深搜实现)

    Description There is a rectangular room, covered with square tiles. Each tile is colored either red ...

随机推荐

  1. jupyter notebook 小技巧

    Converting notebooks to other formats¶ !pip install https://github.com/ipython-contrib/jupyter_contr ...

  2. JAVA单向链表实现

    JAVA单向链表实现 单向链表 链表和数组一样是一种最常用的线性数据结构,两者各有优缺点.数组我们知道是在内存上的一块连续的空间构成,所以其元素访问可以通过下标进行,随机访问速度很快,但数组也有其缺点 ...

  3. python修改文件的属性

    1.执行attrib系统命令 ATTRIB [+R | -R] [+A | -A ] [+S | -S] [+H | -H] [+I | -I] [drive:][path][filename] [/ ...

  4. [leetcode tree]104. Maximum Depth of Binary Tree

    求树的最大深度 class Solution(object): def maxDepth(self, root): if not root: return 0 left = self.maxDepth ...

  5. 大型系统中使用JMS优化技巧–Sun OpenMQ

    我们先来看看在Sun OpenMQ系统中 一个持久.可靠的方式传送消息的步骤是怎么样的,如图所示: 查看大图请点击这里 在传送过程中,系统处理JMS消息分为以下两类:   ■ 有效负荷消息,由生成方发 ...

  6. Java 中的浮点数取精度方法

    Java 中的浮点数取精度方法 一.内容 一般在Java代码中取一个double类型的浮点数的精度,四舍五入或者直接舍去等的方式,使用了4种方法,推荐使用第一种,我已经封装成工具类了. 二.代码实现 ...

  7. 移动web开发经验总结(1)

    1.<meta name="viewport" content="initial-scale=1.0, maximum-scale=1.0, minimum-sca ...

  8. HDU 5699 货物运输 二分

    货物运输 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5699 Description 公元2222年,l国发生了一场战争. 小Y负责领导工人运输物 ...

  9. nlogn 求最长上升子序列 LIS

    最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想. 最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]& ...

  10. jmeter用BeanShell调用jar包对HTTP请求中的参数进行MD5加密

    前提: eclipse.JDK.Jmeter 说明: 本文分为两部分进行配置说明 第一部分:编写JavaMD5加密脚本 第二部分:使用Jmeter的BeanShell进行验证 ************ ...