P5110 块速递推
为啥我就没看出来有循环节呢……
打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\(A^1,A^2,...,A^{k-1}\)和\(A^k,A^{2k},...\),那么每一次就能\(O(1)\)回答询问了
注意常数问题……这份代码勉强卡过……建议矩阵里的元素别开数组直接用四个变量存会快一点……
//minamoto
#include<bits/stdc++.h>
#define R register
#define ull unsigned long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=4e4+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
namespace Mker
{
unsigned long long SA,SB,SC;
void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
unsigned long long rand()
{
SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
unsigned long long t=SA;
SA=SB,SB=SC,SC^=t^SA;return SC;
}
}
struct Matrix{
int a[2][2];
Matrix(){a[0][0]=a[0][1]=a[1][0]=a[1][1]=0;}
int* operator [](const int &x){return a[x];}
Matrix operator *(Matrix b){
Matrix res;
res[0][0]=add(1ll*a[0][0]*b[0][0]%P,1ll*a[0][1]*b[1][0]%P);
res[0][1]=add(1ll*a[0][0]*b[0][1]%P,1ll*a[0][1]*b[1][1]%P);
res[1][0]=add(1ll*a[1][0]*b[0][0]%P,1ll*a[1][1]*b[1][0]%P);
res[1][1]=add(1ll*a[1][0]*b[0][1]%P,1ll*a[1][1]*b[1][1]%P);
return res;
}
}bin1[N],bin2[N],res;int ans,T,n,len;
void init(){
res[0][0]=233,res[0][1]=1,res[1][0]=666,bin1[1]=res;
len=sqrt(1e9+6),bin1[0][0][0]=bin1[0][1][1]=bin2[0][0][0]=bin2[0][1][1]=1;
fp(i,2,len-1)bin1[i]=bin1[i-1]*res;bin2[1]=bin1[len-1]*res;
fp(i,2,len+1)bin2[i]=bin2[i-1]*bin2[1];
}
int main(){
// freopen("testdata.in","r",stdin);
init(),scanf("%d",&T);Mker::init();
while(T--){
Matrix res;n=Mker::rand()%(P-1);
res[0][0]=1;
if(n<=1)ans^=n;
else res=res*bin2[(n-1)/len]*bin1[(n-1)%len],ans^=res[0][0];
}printf("%d\n",ans);return 0;
}
P5110 块速递推的更多相关文章
- P5110 块速递推-光速幂、斐波那契数列通项
P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...
- 洛谷 P5110 块速递推
题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...
- 洛谷P5110 块速递推 [分块]
传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...
- P5110 【块速递推】
太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...
- Luogu5110 块速递推
题面 题解 线性常系数齐次递推sb板子题 $a_n=233a_{n-1}+666a_{n-2}$的特征方程为 $$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\fra ...
- 【洛谷 P5110】 块速递推(矩阵加速,分块打表)
题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...
- P5110-块速递推【特征方程,分块】
正题 题目链接:https://www.luogu.com.cn/problem/P5110 题目大意 数列\(a\)满足 \[a_n=233a_{n-1}+666a_{n-2},a_0=0,a_1= ...
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- Visual Studio 2015 速递(4)——高级特性之移动开发
系列文章 Visual Studio 2015速递(1)——C#6.0新特性怎么用 Visual Studio 2015速递(2)——提升效率和质量(VS2015核心竞争力) Visual Studi ...
随机推荐
- 【LeetCode从零单排】No 114 Flatten Binary Tree to Linked List
题目 Given a binary tree, flatten it to a linked list in-place. For example,Given 1 / \ 2 5 / \ \ 3 4 ...
- jquery 获取下拉框 某个text='xxx'的option的属性 非选中 如何获得select被选中option的value和text和......
jquery 获取下拉框 某个text='xxx'的option的属性 非选中 5 jquery 获取下拉框 text='1'的 option 的value 属性值 我写的var t= $(" ...
- WPF DataGrid获取选择行的数据
在WPF中,单击DataGrid,如何获取当前点击的行? 比如在MouseDoubleClick事件中,事实上获取的选中行是一个DataRowview,你可以通过以下的方法来获取选中行的数据,需要引用 ...
- LeetCode 112 Path Sum(路径和)(BT、DP)(*)
翻译 给定一个二叉树root和一个和sum, 决定这个树是否存在一条从根到叶子的路径使得沿路全部节点的和等于给定的sum. 比如: 给定例如以下二叉树和sum=22. 5 / \ 4 8 / / \ ...
- redis中键值对中值的各种类型
1 value的最基本的数据类型是String 2 如果value是一张图片 先对图片进行base64编码成一个字符串,然后再保存到redis中,用的时候进行base64解码即可. 这是base64的 ...
- yum报错File "/usr/bin/yum", line 30 except KeyboardInterrupt, e:
原因:学python的时候,把centos7自带的python2.7改成了python3.6.2.而yum使用的是python2,所以会出现yum报错. 解决方法: 在文件/usr/bin/yum./ ...
- Java代理(Aop实现的原理)
经过大牛同事的一句指点立马明确的代理实现方式,Spring Aop应该也是这么去做的.直接上代码 实如今Car的run方法之前调用star方法,在run方法之后调用stop方法. Car类 packa ...
- Uva 3902 Network
题目大意: 在非叶子节点上安装最少的服务器使得,每个叶子节点到服务器的距离不超过k. 贪心+图上的dfs. 先从深度最大的叶子节点开始找.找到父节点后再用这个父节点进行扩充. /* ********* ...
- [RK3288][Android6.0] 调试笔记 --- 系统识别不同硬件版本方法【转】
本文转载自:http://m.blog.csdn.net/kris_fei/article/details/70226451 Platform: RockchipOS: Android 6.0Kern ...
- 细说align 的作用及用法
.align 就是用来对齐的,究竟怎么对齐,有啥情况?下面分析一下 基本情况讲解 (一) $vim align1.s 在新建的文件编辑以下代码: 1 2 3 4 5 6 _start: b reset ...