P5110 块速递推
为啥我就没看出来有循环节呢……
打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\(A^1,A^2,...,A^{k-1}\)和\(A^k,A^{2k},...\),那么每一次就能\(O(1)\)回答询问了
注意常数问题……这份代码勉强卡过……建议矩阵里的元素别开数组直接用四个变量存会快一点……
//minamoto
#include<bits/stdc++.h>
#define R register
#define ull unsigned long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=4e4+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
namespace Mker
{
unsigned long long SA,SB,SC;
void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
unsigned long long rand()
{
SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
unsigned long long t=SA;
SA=SB,SB=SC,SC^=t^SA;return SC;
}
}
struct Matrix{
int a[2][2];
Matrix(){a[0][0]=a[0][1]=a[1][0]=a[1][1]=0;}
int* operator [](const int &x){return a[x];}
Matrix operator *(Matrix b){
Matrix res;
res[0][0]=add(1ll*a[0][0]*b[0][0]%P,1ll*a[0][1]*b[1][0]%P);
res[0][1]=add(1ll*a[0][0]*b[0][1]%P,1ll*a[0][1]*b[1][1]%P);
res[1][0]=add(1ll*a[1][0]*b[0][0]%P,1ll*a[1][1]*b[1][0]%P);
res[1][1]=add(1ll*a[1][0]*b[0][1]%P,1ll*a[1][1]*b[1][1]%P);
return res;
}
}bin1[N],bin2[N],res;int ans,T,n,len;
void init(){
res[0][0]=233,res[0][1]=1,res[1][0]=666,bin1[1]=res;
len=sqrt(1e9+6),bin1[0][0][0]=bin1[0][1][1]=bin2[0][0][0]=bin2[0][1][1]=1;
fp(i,2,len-1)bin1[i]=bin1[i-1]*res;bin2[1]=bin1[len-1]*res;
fp(i,2,len+1)bin2[i]=bin2[i-1]*bin2[1];
}
int main(){
// freopen("testdata.in","r",stdin);
init(),scanf("%d",&T);Mker::init();
while(T--){
Matrix res;n=Mker::rand()%(P-1);
res[0][0]=1;
if(n<=1)ans^=n;
else res=res*bin2[(n-1)/len]*bin1[(n-1)%len],ans^=res[0][0];
}printf("%d\n",ans);return 0;
}
P5110 块速递推的更多相关文章
- P5110 块速递推-光速幂、斐波那契数列通项
P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...
- 洛谷 P5110 块速递推
题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...
- 洛谷P5110 块速递推 [分块]
传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...
- P5110 【块速递推】
太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...
- Luogu5110 块速递推
题面 题解 线性常系数齐次递推sb板子题 $a_n=233a_{n-1}+666a_{n-2}$的特征方程为 $$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\fra ...
- 【洛谷 P5110】 块速递推(矩阵加速,分块打表)
题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...
- P5110-块速递推【特征方程,分块】
正题 题目链接:https://www.luogu.com.cn/problem/P5110 题目大意 数列\(a\)满足 \[a_n=233a_{n-1}+666a_{n-2},a_0=0,a_1= ...
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- Visual Studio 2015 速递(4)——高级特性之移动开发
系列文章 Visual Studio 2015速递(1)——C#6.0新特性怎么用 Visual Studio 2015速递(2)——提升效率和质量(VS2015核心竞争力) Visual Studi ...
随机推荐
- Linux C++的多线程编程(转)
1. 引言 线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者.传统的Unix也支持线程的概念,但是在一个进程(proces ...
- 一场由股票提醒助手插件引发的血案——浅入浅出 jquery autocomplete
我没有学过前端,所以这篇文章注定要班门弄斧了. 通常,须要用到什么技术什么语言时,我才去学,学了也不一定掌握,就是记不住!所以如今明确了.学习的时候,亦或是攻克难点的时候,一定要记录下来.并不一定非要 ...
- <bgsound> - 背景音乐
摘要 项目 说明 形式 <bgsound src="..."> 支持 e2+ 标签省略 开始标签:必须,结束标签:无 ■ 说明 bgsound 是 background ...
- 【转载】.NET Remoting学习笔记(三)信道
目录 .NET Remoting学习笔记(一)概念 .NET Remoting学习笔记(二)激活方式 .NET Remoting学习笔记(三)信道 参考:♂风车车.Net .NET Framework ...
- 用JAVA编写浏览器内核之实现javascript的document对象与内置方法
原创文章.转载请注明. 阅读本文之前,您须要对浏览器怎样载入javascript有一定了解. 当然,对java与javascript本身也须要了解. 本文首先介绍浏览器载入并执行javascript的 ...
- 让Spring Boot启动更快
关注公众号:锅外的大佬, 每日推送国外技术好文,帮助每位开发者更好成长 原文链接:https://dev.to/bufferings/lets-make-springboot-app-start-fa ...
- 设计模式学习笔记——Observer观察者模式
观察者模式里面有两个东西:观察者(Observer)和目标(Subject).当目标发生变化的时候,观察者随之起舞,也作出相应的变化.此为观察者模式. 这是怎么做到的?主要是目标里面存有一份观察者的名 ...
- python day - 19 抽象类 接口类 多态 封装
一. 抽象类接口类即制定一个规范 特点: 1.不可被实例化. 2.规范子类当中必须事先某个方法. 3.在python中有原生实现抽象类的方法,但没有原生实现接口类的方法. 例题:制定一个规范就是,子类 ...
- 关闭SVN服务
关闭TSVNCache.exe进程 在Windows下使用SVN,通常都会安装TortoiseSVN,安装后会有一个TSVNCache.exe的进程驻留内存,这个进程会定时地去扫描Subversion ...
- debian old version cd and distribution archives
1 debian old version cd/dvd 官网的old version image,下载速度很慢 http://cdimage.debian.org/cdimage 下面这个靠谱,是镜像 ...