ReLu(修正线性单元)、sigmoid和tahh的比较
不多说,直接上干货!
最近,在看论文,提及到这个修正线性单元(Rectified linear unit,ReLU)。
Deep Sparse Rectifier Neural Networks
ReLu(Rectified Linear Units)
修正线性单元(Rectified linear unit,ReLU)
激活函数实现–4 Rectified linear函数实现Rectified Linear Units
ReLU 和sigmoid 函数对比
ReLU为什么比Sigmoid效果好
在CNN卷积神经网络中,习惯用ReLU函数代替sigmoid, tahh等目标激活函数,这应该是因为,RELU函数在大于0的时候,导数为恒定值,而sigmoid和tahh函数则不是恒定值,相反,sigmoid和tahh的导数,类似于高斯函数的曲线形状,在两端接近目标时,导数变小。
导数小的话,在训练神经网络的时候,会BP反向传播误差,导致收敛减慢;而ReLU函数则避免了这点,很好很强大。
当然,事情不是一定的,还是得结合实际情况选择,或者涉及目标激活函数。
附:双曲函数类似于常见的(也叫圆函数的)三角函数。基本双曲函数是双曲正弦"sinh",双曲余弦"cosh",从它们导出双曲正切"tanh"
sigmod函数:
Relu函数:
综合:
主要是因为它们gradient特性不同。sigmoid和tanh的gradient在饱和区域非常平缓,接近于0,很容易造成vanishing gradient的问题,减缓收敛速度。vanishing gradient在网络层数多的时候尤其明显,是加深网络结构的主要障碍之一。相反,Relu的gradient大多数情况下是常数,有助于解决深层网络的收敛问题。Relu的另一个优势是在生物上的合理性,它是单边的,相比sigmoid和tanh,更符合生物神经元的特征。
而提出sigmoid和tanh,主要是因为它们全程可导。还有表达区间问题,sigmoid和tanh区间是0到1,或着-1到1,在表达上,尤其是输出层的表达上有优势。
如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。
正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。
第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失,参见 @Haofeng Li 答案的第三点),从而无法完成深层网络的训练。
第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释balabala)。
当然现在也有一些对relu的改进,比如prelu,random relu等,在不同的数据集上会有一些训练速度上或者准确率上的改进,具体的大家可以找相关的paper看。
多加一句,现在主流的做法,会在做完relu之后,加一步batch normalization,尽可能保证每一层网络的输入具有相同的分布[1]。而最新的paper[2],他们在加入bypass connection之后,发现改变batch normalization的位置会有更好的效果。大家有兴趣可以看下。
ReLu(修正线性单元)、sigmoid和tahh的比较的更多相关文章
- 修正线性单元(Rectified linear unit,ReLU)
修正线性单元(Rectified linear unit,ReLU) Rectified linear unit 在神经网络中,常用到的激活函数有sigmoid函数f(x)=11+exp(−x).双曲 ...
- 感知机和线性单元的C#版本
本文的原版Python代码参考了以下文章: 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 在机器学习如火如荼的时代,Python大行其道,几乎所有的机器学习的 ...
- 用线性单元(LinearUnit)实现工资预测的Python3代码
功能:通过样本进行训练,让线性单元自己找到(这就是所谓机器学习)工资计算的规律,然后用两组数据进行测试机器是否真的get到了其中的规律. 原文链接在文尾,文章中的代码为了演示起见,仅根据工作年限来预测 ...
- (2)Deep Learning之线性单元和梯度下降
往期回顾 在上一篇文章中,我们已经学会了编写一个简单的感知器,并用它来实现一个线性分类器.你应该还记得用来训练感知器的『感知器规则』.然而,我们并没有关心这个规则是怎么得到的.本文通过介绍另外一种『感 ...
- 关于逻辑回归是否线性?sigmoid
from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线 ...
- [PyTorch 学习笔记] 3.3 池化层、线性层和激活函数层
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍 ...
- [DeeplearningAI笔记]神经网络与深度学习3.2_3.11(激活函数)浅层神经网络
觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2 神经网络表示 对于一个由输入层,隐藏层,输出层三层所组成的神经网络来说,输入层,即输入数据被称为第0层,中间层被称为第1层,输出层被称为 ...
- 第十五节,卷积神经网络之AlexNet网络详解(五)
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...
- Deep Learning基础--26种神经网络激活函数可视化
在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为.正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分 ...
随机推荐
- 任务五:零基础HTML及CSS编码(二)
面向人群: 零基础或初学者 难度: 简单 重要说明 百度前端技术学院的课程任务是由百度前端工程师专为对前端不同掌握程度的同学设计.我们尽力保证课程内容的质量以及学习难度的合理性,但即使如此,真正决定课 ...
- 洛谷——P4109 [HEOI2015]定价
P4109 [HEOI2015]定价 模拟(有点儿贪心) 题目要求在区间$l,r$中$x$后导0尽量多,且除去后导0之外,最后一个数尽量是$5$才最优 从$l$到$r$依次考虑, 假设当前考虑到$50 ...
- 交叉编译OpenCV的教程——基于aarch64-linux-gnu的交叉编译器
1.获取OpenCV3.3.1的源码 地址:https://pan.baidu.com/s/1lnKDThiWg-2QDXNEzVAqrA 提取码:vmn4 2.解压源码包 命令:unzip open ...
- 为什么JavaScript里面0.1+0.2 === 0.3是false
以下这一篇说明的很详细:彻底理解0.1 + 0.2 === 0.30000000000000004的背后 0.1+0.2 === 0.3 //返回是false, 这是为什么呢?? 我们知道浮点数计算是 ...
- hdu1394(Minimum Inversion Number)线段树
明知道是线段树,却写不出来,搞了半天,戳,没办法,最后还是得去看题解(有待于提高啊啊),想做道题还是难啊. 还是先贴题吧 HDU-1394 Minimum Inversion Number Time ...
- pwntools各使用模块简介
pwntools pwntools 是一款专门用于CTF Exploit的python库,能够很方便的进行本地与远程利用的切换,并且里面包含多个模块,使利用变得简单.可以在github上直接搜索pwn ...
- Insert or Merge
7-13 Insert or Merge(25 分) According to Wikipedia: Insertion sort iterates, consuming one input elem ...
- 1. node.js环境搭建 第一行代码
一.NodeJs简介 NodeJS官网上的介绍: Node.js is a platform built on Chrome's JavaScript runtime for easily bui ...
- PS学习笔记(03)
ui到底是什么? 很多同学不知道ui是什么,以为画个ICON图标就是做ui了,导致很多人都忙着画各种各样的图标.这样很容易让那些新人们走错路,最后我想说的是icon不是全部,不要沉迷其中,要学的还有很 ...
- [POJ2352] Stars(树状数组)
传送门 先按照下标x排序,然后依次把y加入树状数组,边加入边统计即可. 注意下标re从零开始,需+1s ——代码 # include <iostream> # include <cs ...