传送门

因为答案满足单调性,所以看到这个题,第一反应是二分,但是总是WA,也没有超时。

看了题解,,,,,,

这题刚开始很多人会想到二分,二分答案,然后看看是否能绕过所有信号塔,但是,这样写明显超时,对于任何一个点,要找到离它最近的信号塔需要O(n)的时间,再乘上M*L(L=海滩的长度)不超时才怪呢。

这一题的本质就是封锁海滩,即用信号塔的工作范围将两边的边界连在一起。所以,这题就是求一条从第0列到第n列的最短路径,用点与边界的距离作为权值,点与点之间的距离的二分之一作为权值,构图完成后,用Dijkstra算法求最短路就可以了。当然用Kruskal算法并查集结构依次加最小边,直到两条边界被连在一起也是可以的。但是要注意最短路的长度是路径上边权的最大值,而不是边权之和

#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 1000001 int f[N];
int n, m, cnt;
double X[N], Y[N]; struct node
{
int x, y;
double z;
node(int x = 0, int y = 0, double z = 0) : x(x), y(y), z(z) {}
}p[N]; inline double D(int i, int j)
{
return sqrt((X[i] - X[j]) * (X[i] - X[j]) + (Y[i] - Y[j]) * (Y[i] - Y[j]));
} inline bool cmp(node x, node y)
{
return x.z < y.z;
} inline int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} int main()
{
int i, j, x, y;
scanf("%d %d", &n, &m);
for(i = 1; i <= m; i++) scanf("%lf %lf", &X[i], &Y[i]);
for(i = 1; i <= m; i++)
for(j = i + 1; j <= m; j++)
p[++cnt] = node(i, j, D(i, j) / 2);
for(i = 1; i <= m; i++)
{
p[++cnt] = node(0, i, X[i]);
p[++cnt] = node(i, m + 1, n - X[i]);
}
std::sort(p + 1, p + cnt + 1, cmp);
for(i = 0; i <= m + 1; i++) f[i] = i;
for(i = 1; i <= cnt; i++)
{
x = find(p[i].x);
y = find(p[i].y);
f[x] = y;
if(find(0) == find(m + 1))
{
printf("%.2lf\n", p[i].z);
return 0;
}
}
}

  

[luoguP1783] 海滩防御(二分 || 最短路 || 最小生成树)的更多相关文章

  1. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

  2. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  3. P1783 海滩防御

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  4. 二分+最短路 uvalive 3270 Simplified GSM Network(推荐)

    // 二分+最短路 uvalive 3270 Simplified GSM Network(推荐) // 题意:已知B(1≤B≤50)个信号站和C(1≤C≤50)座城市的坐标,坐标的绝对值不大于100 ...

  5. BZOJ_1614_ [Usaco2007_Jan]_Telephone_Lines_架设电话线_(二分+最短路_Dijkstra/Spfa)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1614 分析 类似POJ_3662_Telephone_Lines_(二分+最短路) Dijks ...

  6. P1462 通往奥格瑞玛的道路 (二分+最短路)

    题目 P1462 通往奥格瑞玛的道路 给定\(n\)个点\(m\)条边,每个点上都有点权\(f[i]\),每条边上有边权,找一条道路,使边权和小于给定的数\(b\),并使最大点权最小. 解析 二分一下 ...

  7. 二分+最短路 UVALive - 4223

    题目链接:https://vjudge.net/contest/244167#problem/E 这题做了好久都还是超时,看了博客才发现可以用二分+最短路(dijkstra和spfa都可以),也可以用 ...

  8. 2018.07.20 bzoj1614: Telephone Lines架设电话线(二分+最短路)

    传送门 这题直接做显然gg" role="presentation" style="position: relative;">gggg,看这数据 ...

  9. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举 ...

随机推荐

  1. PowerShell~执行策略的介绍

    首先看一下无法加载ps1脚本的解决方法 事实上也是由于策略导致的  解决方法主是开启对应的策略 set-ExecutionPolicy RemoteSigned 执行策略更改 执行策略可以防止您执行不 ...

  2. 06.NopCommerce配置邮箱账户

    NopCommerce如果配置让用户注册为通过邮箱注册,并且注册后激活邮箱才可登录,那么我们需要对NopCommerce的邮箱账户进行配置,用来发送邮件用.当然邮件还有很多其他用途,比如发送用户订阅的 ...

  3. LinQ的使用

    LinQ:LinQ to Sql类 它是一个集成化的数据访问类,微软将原本需要我们自己动手去编写的一些代码,集成到了这个类中,会自动生成. LinQ的创建: 添加项——添加新项(LinQ to Sql ...

  4. Spring boot Jpa添加对象字段使用数据库默认值

    Spring boot Jpa添加对象字段使用数据库默认值 jpa做持久层框架,项目中数据库字段有默认值和非空约束,这样在保存对象是必须保存一个完整的对象,但在开发中我们往往只是先保存部分特殊的字段其 ...

  5. 1. UI Tests简介

    (1) User Interface Testing UI Testing库主要提供了与App中的UI元素进行查找和交互的能力,这使得我们可以通过验证UI元素的状态来测试App是否正常运行.     ...

  6. laravel中的队列

    Laravel 队列为不同的后台队列服务提供统一的 API,可使用多种驱动,eg:mysql,redis,Beanstalkd等,驱动已经封装,不需要管理这些驱动,只需要修改配置就可以更改驱动,在驱动 ...

  7. c语言 预处理的使用 宏展开下的#,##

    1. #include   包含头文件 2.define 宏定义(可以理解为替换,不进行语法检查) 写法 #define 宏名 宏体  加括号 #define ABC (5+3) #define AB ...

  8. 嵌入式C语言-学习书籍推荐(pdf附上百度云链接)

    先推荐学习视频网站: https://www.bilibili.com/video/av22631677?from=search&seid=800092160484173881 书籍只推荐2本 ...

  9. windows cmd 模仿电影黑客

    1.win+R 2.输入cmd 3.按F11进入全屏 4.color a 改变颜色为绿色(可能看起来秀一点) 5.dir/s 查看所有文件,就跑起来了,看起来很酷,但是在懂得人眼里,没什么的(所以只能 ...

  10. Swift中Singleton的实现

    一.意图 保证一个类公有一个实例,并提供一个访问它的全局访问点. 二.使用场景 1.使用场景 当类只能有一个实例而且客户可以从一个众所周知的访问点访问它时 当这个唯一实例应该是通过子类化可扩展的,并且 ...