硬币购物

 硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4
27

题解:

就是先f[i]表示到达i这个价值的方案数,先不管限制,

然后可以这样想,将所有方案巨鹿,然后减去c1超过限制的,减去c2超过限制的,减去c3超过限制的,减去c4超过限制的。

这样可以容斥来做。

这样想会不会少+

比如 f[i-(d[i]+1)*c[i]]方案中已经超过了d[i]的限制,也就是后面可以不超过限制,

但是这样情况不会存在,为什么呢,因为前面的超出了,不超出,+后面一定超出,就是总的超出方案,比如前面超出,后面未超出

可以想成前面未超出,后面超出。这样想就可以了。

 #include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
#define ll long long
using namespace std; int tot;
int c[],b[];
ll ans,f[]; void dfs(int x,int k,int sum)
{
if (sum<) return;
if (x==)
{
if (k&) ans-=f[sum];
else ans+=f[sum];
return;
}
dfs(x+,k+,sum-(b[x]+)*c[x]);
dfs(x+,k,sum);
}
int main()
{
for (int i=;i<=;i++)
scanf("%d",&c[i]);
scanf("%d",&tot);
f[]=;
for (int i=;i<=;i++)
for (int j=c[i];j<=;j++)
f[j]+=f[j-c[i]];
int x;
for (int i=;i<=tot;i++)
{
for (int j=;j<=;j++)
scanf("%d",&b[j]);
scanf("%d",&x);
ans=;
dfs(,,x);
printf("%lld\n",ans);
}
}

【bzoj1042】[HAOI2008]硬币购物-递推与动规-容斥原理的更多相关文章

  1. bzoj1042硬币购物——递推+容斥

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 递推,再用容斥原理减掉多余的,加上多减的……(dfs)即可. 代码如下: #includ ...

  2. BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2924  Solved: 1802 [Submit][St ...

  3. [bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  4. BZOJ1042 [HAOI2008]硬币购物 完全背包 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1042 题目概括 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了t ...

  5. bzoj1042: [HAOI2008]硬币购物

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  6. BZOJ1042:[HAOI2008]硬币购物(DP,容斥)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  7. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  8. 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)

    传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...

  9. bzoj1042: [HAOI2008]硬币购物(DP+容斥)

    1600+人过的题排#32还不错嘿嘿 浴谷夏令营讲过的题,居然1A了 预处理出f[i]表示购买价值为i的东西的方案数 然后每次询问进行一次容斥,答案为总方案数-第一种硬币超限方案-第二种超限方案-第三 ...

随机推荐

  1. android开发学习 ------- 枚举类型在Android中的用法

    一般上为了简化代码,重用代码,设置标志位来表示不同的流程,这个标志位可以使用枚举类型来表示: 1:定义 public FbManner fbManer = FbManner.EMAIL; //给一个默 ...

  2. git设置log的别名 for hist

    hist -- alias for 'log --color --graph --date=short --pretty=format:'%Cred%h%Creset -%C(yellow)%d%C ...

  3. Selenium私房菜系列--总章

    前言 在这段期间,我一直在找关于服务器的端测试方案,自动化工具等等,无意间我发现了Selenium这个工具.在试用一段时间后,觉得Selenium确实是一个很不错的Web测试工具.在和强大的QTP比较 ...

  4. 原创:四种Linux系统开机启动项优命令超给力超详细详解

    老葵花哥哥又开课了 接下来是你们的齐天大圣孙悟空给你们带来的详细版Linux系统开机启动优化四种命令 第一种方法是很正常的 第二种有点难理解 第三种来自我的一个奇思妙想 本文档秉承 不要钱也不要臀部的 ...

  5. 升级或者重装Discuz! 版本后 QQ互联英文乱码显示的正确解决方法

    升级Discuz! X3版本QQ互联英文乱码!connect_viewthread_share_to_qq!  目前Discuz!论坛上 最简单的解决方法: 第一步:后台----->站长---- ...

  6. Python 使用random模块生成随机数

    需要先导入 random  模块,然后通过 random 静态对象调用该一些方法. random() 函数中常见的方法如下: # coding: utf-8 # Team : Quality Mana ...

  7. Maven实战读书笔记(六):Maven灵活构建

    Maven为了支持构建的灵活性,内置了3大特性,即:属性.Profile和资源过滤. 6.1 Maven属性 Maven的属性与Java代码的常量有异曲同工之妙,都是为了消除重复,对相关内容进行统一管 ...

  8. Openjudge-2815-城堡问题

    对于这道题目来说的话,我们的思路是这样的,我们首先把数据读进来,然后把color数组清零. 我们的思路是这样的的,给每一个房间设置一个对应的color数组,然后color数组里面填满不同的数字,每一种 ...

  9. 常见的网络命令--ping.hostname

    hostname命令 作用:显示以及设置主机名 一.  显示系统主机名 第一种方式:hostname 第二种方式:cat /etc/sysconfig/ntework 使用举例: 从上面可以看到我的系 ...

  10. redhat 7.x 、redhat 6.x查看硬盘UUID方法

    1.查看磁盘分区UUID: [root@rac01 ~]# blkid /dev/sdb1: UUID="6bba92c4-0b25-4cc4-9442-ca87c563720a" ...