题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403

一开始想了个 O(n) 的做法,不行啊...

O(n)想法是这样的:先考虑递推,设 f[i][j] 为在第 i 个位置选第 j 个数字;

设 m = r-l+1;

那么 f[i][j] = ∑(1<=k<=j) f[i-1][k],初值是 f[1][i] = 1 (1<=i<=m);

那么 ans = ∑(1<=i<=n , 1<=j<=m) f[i][j];

这个式子换个角度想,可以考虑初值的1贡献了几次;

对于每个 f[1][j],发现它到 i=2 的位置贡献了 m - j 次,之后每次递推贡献了 ∑(1<=i<=m-j) i 次,也就是 C(m-j , 2) 次;

所以 ans = ∑(1<=i<=m) (C(i,2) * (n-2) + i) + m,其中最后加的 m 是 ∑(1<=i<=m) f[1][i];

但这个时间复杂度是 O(n) 的,不行啊...

然后看了博客:https://blog.csdn.net/Clove_unique/article/details/68491395

竟然是如此简洁!我就是太关注那个序列,其实只需要选出几个数,之后再排序就好了啊!!

需要预处理阶乘逆元,而且别忘了处理 0 的逆元。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const mod=1e6+;
int T,n,l,r,m;
ll ans,fac[mod+],inv[mod+];
ll pw(ll a,ll b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)
if(b&)ret=(ret*a)%mod;
return ret;
}
void init()
{
fac[]=;
for(int i=;i<mod;i++) fac[i]=(fac[i-]*i)%mod;
inv[mod-]=pw(fac[mod-],mod-);//不能求 inv[mod]
for(int i=mod-;i>=;i--) inv[i]=(inv[i+]*(i+))%mod;//要处理出0的逆元!
}
ll C(int n,int m)
{
if(n<m)return ;
// ll a=1,b=1; m=min(m,n-m);
// for(int i=n-m+1;i<=n;i++)a=(a*i)%mod;
// for(int i=1;i<=m;i++)b=(b*i)%mod;
// return (a*pw(b,mod-2))%mod;
return ((fac[n]*inv[m])%mod*inv[n-m])%mod;
}
ll Lucas(ll n,ll m)
{
if(m==)return ;
return (C(n%mod,m%mod)*Lucas(n/mod,m/mod))%mod;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&l,&r); m=r-l+;
ll ans=Lucas((ll)n+m,m)-;
printf("%lld\n",(ans%mod+mod)%mod);//
}
return ;
}

bzoj4403 序列统计——组合数学的更多相关文章

  1. BZOJ4403 序列统计—Lucas你好

    绝对是全网写的最详细的一篇题解  题目:序列统计 代码难度:简单 思维难度:提高+-省选 讲下题面:给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案 ...

  2. BZOJ4403: 序列统计【lucas定理+组合数学】

    Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组 ...

  3. 2018.09.09 bzoj4403: 序列统计(Lucas定理)

    传送门 感觉单调不降序列什么的不好做啊. 于是我们序列中下标为i的元素的值加上i,这样就构成了一个单调递增的序列. 问题就变成了: 求出构造长度分别为1 ~ n且每个元素的值在l+1 ~ r+n之间的 ...

  4. bzoj4403: 序列统计

    我们很容易发现答案是C(R-L+N+1,N)-1 然后用一下lucas定理就行了 #include <iostream> #include <cstdio> #include ...

  5. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  6. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  7. 【BZOJ4403】序列统计 Lucas定理

    [BZOJ4403]序列统计 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第 ...

  8. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  9. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

随机推荐

  1. java虚拟机(二)--类加载机制和双亲委派模型

    一.类的生命周期 加载(Loading).验证(Verification).准备(Preparation).解析(Resolution).初始化(Initialization).使用(Using).卸 ...

  2. 解决header,footer等HTML5标签在IE(IE6/IE7/IE8)无效的方法

    HTML5的语义化标签以及属性,可以让开发者非常方便地实现清晰的web页面布局,加上CSS3的效果渲染,快速建立丰富灵活的web页面显得非常简单. HTML5的新标签元素有: <header&g ...

  3. Jmeter - 获取返回结果中的字段值

    Jmeter测试场景:一个web系统,需要先发送登录请求,获取到登录Token之后,后续每次请求都需要在请求头中附带Token才有权限操作.现在需要在Jmeter中自动获取每次登录请求返回的Token ...

  4. (七)python3 切片

    切片:取一个 list 或 tuple 的部分元素是非常常见的操作 >>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack'] #笨办法 ...

  5. Python基础—面向对象(初级篇)

    一.什么是面向对象编程 面向对象编程(Object Oriented Programming,OOP,面向对象程序设计),python语言比较灵活即支持面向对象编程也支持面向函数式编程. 面向过程编程 ...

  6. RequestMapping_Ant 路径

    [使用@RequestMapping映射请求] [Ant风格资源地址支持3种匹配符] (1)? :匹配文件名中的一个字符. (2) * :匹配文件名中的任意字符. (3) ** :**匹配多层路径. ...

  7. 【Codeforces 1009D】Relatively Prime Graph

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 1000以内就有非常多组互质的数了(超过1e5) 所以,直接暴力就行...很快就找完了 (另外一开始头n-1条边找1和2,3...n就好 [代 ...

  8. nyoj 55 懒省事的小明(priority_queue优先队列)

    懒省事的小明 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述       小明很想吃果子,正好果园果子熟了.在果园里,小明已经将所有的果子打了下来,而且按果子的不同种 ...

  9. [luoguP2904] [USACO08MAR]跨河River Crossing(DP)

    传送门 f[i] 表示送前 i 头牛过去再回来的最短时间 f[i] = min(f[i], f[j] + sum[i - j] + m) (0 <= j < i) ——代码 #includ ...

  10. android中listview点击监听器onItemClick四个参数的含义

    public void onItemClick(AdapterView<?> arg0, View view, int position, long arg3) X, Y两个listvie ...