传送门

LCT秒天秒地

树剖比较裸的题了

用线段树记录一下区间的最左边的黑点的编号(因为同一条链上肯定是最左边的深度最小,到根节点距离最近)

然后记得树剖的时候肯定是越后面的答案越优,因为深度越浅

 //minamoto
#include<bits/stdc++.h>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+;
int head[N],Next[N<<],ver[N<<],tot;
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
int dfn[N],sz[N],son[N],fa[N],bl[N],val[N],top[N],cnt,n,m;
void dfs1(int u){
sz[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa[u]){
fa[v]=u,dfs1(v),sz[u]+=sz[v];
if(sz[son[u]]<sz[v]) son[u]=v;
}
}
}
void dfs2(int u,int t){
dfn[u]=++cnt,bl[cnt]=u,top[u]=t;
if(son[u]){
dfs2(son[u],t);
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
}
int mx[N<<];
#define ls (p<<1)
#define rs (p<<1|1)
inline void upd(int p){
mx[p]=mx[ls]?mx[ls]:mx[rs];
}
void build(int p,int l,int r){
if(l==r) return (void)(mx[p]=val[bl[l]]?bl[l]:);
int mid=(l+r)>>;
build(ls,l,mid),build(rs,mid+,r);
upd(p);
}
void update(int p,int l,int r,int x){
if(l==r) return (void)(mx[p]=val[bl[l]]?bl[l]:);
int mid=(l+r)>>;
x<=mid?update(ls,l,mid,x):update(rs,mid+,r,x);
upd(p);
}
int query(int p,int l,int r,int ql,int qr){
if(ql<=l&&qr>=r) return mx[p];
int mid=(l+r)>>,res=;
if(ql<=mid&&(res=query(ls,l,mid,ql,qr))) return res;
if(qr>mid&&(res=query(rs,mid+,r,ql,qr))) return res;
return ;
}
inline void change(int i){
val[i]^=,update(,,n,dfn[i]);
}
inline int get(int u){
int res=,p;
while(top[u]!=){
p=query(,,n,dfn[top[u]],dfn[u]);
p?res=p:;
u=fa[top[u]];
}
p=query(,,n,,dfn[u]);p?res=p:;
return res?res:-;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=,u,v;i<n;++i)
u=read(),v=read(),add(u,v),add(v,u);
dfs1(),dfs2(,),build(,,n);
while(m--){
int op=read(),u=read();
op&?print(get(u)):change(u);
}
Ot();
return ;
}

洛谷P4116 Qtree3(树剖+线段树)的更多相关文章

  1. 洛谷P4315 月下“毛景树”(树剖+线段树)

    传送门 woc这该死的码农题…… 把每一条边转化为它连接的两点中深度较深的那一个,然后就可以用树剖+线段树对路径进行修改了 然后顺便注意在上面这种转化之后,树剖的时候不能搞$LCA$ 然后是几个注意点 ...

  2. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

  3. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  4. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  5. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  6. 【BZOJ5210】最大连通子块和 树剖线段树+动态DP

    [BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块 ...

  7. [LNOI2014]LCA(树剖+线段树)

    \(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...

  8. [CF1007D]Ants[2-SAT+树剖+线段树优化建图]

    题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...

  9. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  10. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

随机推荐

  1. Codeforces Round Edu 36

    A.B.C 略 D(dfs+强连通分量) 题意: 给出一个n(n<=500)点m(m<=100000)边的有向图,问能否通过删去一条边使得该图无环. 分析: 最简单的想法就是枚举一条边删去 ...

  2. Java读取文件时中文路径处理

    读取文件路径时可能存在以下情况: 1.空格,如果出现空格会转变成“%20” 2.中文路径,如果出现中文路径会变成URI编码“%e5%bc%80%e5%8f%91%e5%b7%a5%e7%a8%8b” ...

  3. how to read openstack code: loading process

    之前我们了解了neutron的结构,plugin 和 extension等信息.这一章我们看一下neutron如何加载这些plugin和extension.也就是neutron的启动过程.本文涉及的代 ...

  4. CentOS 6.x ELK(Elasticsearch+Logstash+Kibana)

    CentOS 6.x ELK(Elasticsearch+Logstash+Kibana) 前言 Elasticsearch + Logstash + Kibana(ELK)是一套开源的日志管理方案, ...

  5. Find Minimum in Rotated Sorted Array 旋转数组中找最小值 @LeetCode

    O(n)的算法就不说了,这题主要考查的是 O(logn)的算法. 有序数组easy想到使用二分查找解决.这题就是在二分基础上做一些调整.数组仅仅有一次翻转,能够知道原有序递增数组被分成两部分,这俩部分 ...

  6. &lt;一&gt;读&lt;&lt;大话设计模式&gt;&gt;之简单工厂模式

    工厂模式尽管简单.可是写下这篇文章却不简单. 第一:本人经过内心的挣扎后才决定開始写博文的.为什么呢,由于好长时间没有写了,对自己的文学功底也是好不自信.可是技术这东西你不写出来你真不知道自己掌握多少 ...

  7. LoadRunner系列之—-01 接口压力测试脚本

    LoadRunner中一般用如下函数进行接口测试: <一>. http或soap协议下的get请求接口,样例如下: web_url("integrated_query.jsp&q ...

  8. Unity5.1 新的网络引擎UNET(八) UNET 系统概括

     孙广东   2015.7.12 Server and Host 在Unity 的 网络系统,游戏有 一个server和多个client. 当没有专用的server时,client之中的一个扮演s ...

  9. 从程序员角度看ELF | Linux-Programming (转)

    ★概要: 这片文档从程序员的角度讨论了linux的ELF二进制格式.介绍了一些ELF执行 文件在运行控制的技术.展示了如何使用动态连接器和如何动态装载ELF. 我们也演示了如何在LINUX使用GNU ...

  10. 嵌入式linux 实现mdev SD卡和U盘自己主动挂载和卸载的方法 mdev.conf

    首先先參考这些博客做一些了解:http://linux.chinaunix.net/techdoc/install/2009/11/18/1144936.shtml http://www.cnblog ...