poj 3233(矩阵高速幂)
题目链接:http://poj.org/problem?id=3233。
题意:给出一个公式求这个式子模m的解;
分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点。本题k的值非常大。所以要用二分求和来降低执行时间。
代码:
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <utility>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <functional> using namespace std;
struct Matrax{
long long m[50][50];
}ter;
int n,m;
Matrax add(Matrax a,Matrax b){
Matrax p;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
p.m[i][j]=a.m[i][j]+b.m[i][j];
p.m[i][j]%=m;
// cout<<p.m[i][j]<<" ";
}
// cout<<endl;
}
return p;
}//矩阵加法
Matrax muli(Matrax a,Matrax b){
Matrax p;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
p.m[i][j]=0;
for(int k=0;k<n;k++){
p.m[i][j]+=a.m[i][k]*b.m[k][j];
p.m[i][j]%=m;
}
}
return p;
}//矩阵乘法
Matrax quick_mod(Matrax a,int b){
Matrax ans=ter;
while(b){
if(b&1){
ans=muli(ans,a);
b--;
}
else {
b>>=1;
a=muli(a,a);
}
}
return ans;
}//高速幂
Matrax sum(Matrax a,int k){
if(k==1)return a;
Matrax ans,b;
ans=sum(a,k/2);
if(k&1){
b=quick_mod(a,k/2+1);
ans=add(ans,muli(ans,b));
ans=add(ans,b);
}
else {
b=quick_mod(a,k/2);
ans=add(ans,muli(ans,b));
}
return ans;
}//二分求和
int main(){
int k;
while(scanf("%d%d%d",&n,&k,&m)!=EOF){
Matrax A,tmp;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
scanf("%I64d",&A.m[i][j]);
ter.m[i][j]=(i==j);
tmp.m[i][j]=0;
}
tmp=sum(A,k);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++)
cout<<tmp.m[i][j]<<" ";
cout<<endl;
} }
return 0;
}
poj 3233(矩阵高速幂)的更多相关文章
- poj 3233 矩阵快速幂
地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方 结果模m的相加和是多少 Given a n × n matrix A and a positive i ...
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
- Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板
题目链接 请猛戳~ Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 ...
- poj 3233 矩阵快速幂+YY
题意:给你矩阵A,求S=A+A^1+A^2+...+A^n sol:直接把每一项解出来显然是不行的,也没必要. 我们可以YY一个矩阵: 其中1表示单位矩阵 然后容易得到: 可以看出这个分块矩阵的左下角 ...
- poj 2778 AC自己主动机 + 矩阵高速幂
// poj 2778 AC自己主动机 + 矩阵高速幂 // // 题目链接: // // http://poj.org/problem?id=2778 // // 解题思路: // // 建立AC自 ...
- [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3048 Accepted: 12 ...
- POJ 3613 Cow Relays (floyd + 矩阵高速幂)
题目大意: 求刚好经过K条路的最短路 我们知道假设一个矩阵A[i][j] 表示表示 i-j 是否可达 那么 A*A=B B[i][j] 就表示 i-j 刚好走过两条路的方法数 那么同理 我们把 ...
- UVA 11551 - Experienced Endeavour(矩阵高速幂)
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...
- UVA10518 - How Many Calls?(矩阵高速幂)
UVA10518 - How Many Calls?(矩阵高速幂) 题目链接 题目大意:给你fibonacci数列怎么求的.然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用 ...
随机推荐
- 手机,平板当中浏览和编辑DWG的CAD控件出来啦!支持ARX二次开发
控件2014.06.30 安卓开发最新更新 发布时间:2014-06-30 22:22:42 开发包下载地址:http://www.mxdraw.com/MxDraw6.0Android(201406 ...
- h5 中MP3 播放暂停 jq
<!--音乐--> <div id="music"> <img src="../img/music.gif" class=&quo ...
- [Python3网络爬虫开发实战] 1.2.4-GeckoDriver的安装
上一节中,我们了解了ChromeDriver的配置方法,配置完成之后便可以用Selenium驱动Chrome浏览器来做相应网页的抓取. 那么对于Firefox来说,也可以使用同样的方式完成Seleni ...
- 【memcached】memcached中flags字段的作用
我们一般只注意到memcached的数据结构是key,value,今天看memcached源代码的时候,盯上了flags,没看明白.后来问了一下同事,说PHP当中使用flags标记,标识memcach ...
- span-wise drag/lift forces of cylinder
span-wise drag/lift forces of cylinder SR Description: Dear Sir/Madam, I am trying to simulate a 3 ...
- SpringMVC Controller的返回类型
Controller的三种返回类型中 ModelAndView类型 带数据带跳转页面 String 跳转页面不带数据 void 通常是ajax格式请求时使用 1返回ModelAndView contr ...
- angular(转)
学习之前可以看看 知乎上讨论angularjs优缺点 帮你选择框架的网站 同类主流框架对比 教程 angularjs在慕课网 angularjs在51cto angularjs在图灵社区 社区 Ang ...
- 7-16 一元多项式求导(20 分)(有关while(scanf("%d",&n)!=EOF))
7-16 一元多项式求导(20 分) 设计函数求一元多项式的导数. 输入格式: 以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式: 以与输入相同 ...
- MySQL prepare语句的SQL语法
MySQL prepare语法: PREPARE statement_name FROM preparable_SQL_statement; /*定义*/ EXECUTE statement_name ...
- [luoguP1472] 奶牛家谱 Cow Pedigrees(DP)
传送门 一个深度为i的树可以由一个根节点外加两个深度为i-1的树组成,这就决定了DP该怎么写. 然而我真的没有想到. f[i][j]表示深度为i节点数为j的个数 sum[i][j]表示深度小于等于i节 ...