PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程
什么是 PyTorch?
PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群:
- NumPy 的替代品,可以利用 GPU 的性能进行计算。
- 深度学习研究平台拥有足够的灵活性和速度
开始学习
Tensors (张量)
Tensors 类似于 NumPy 的 ndarrays ,同时 Tensors 可以使用 GPU 进行计算。
from __future__ import print_function
import torch
构造一个5x3矩阵,不初始化。
x = torch.empty(5, 3)
print(x)
输出:
tensor(1.00000e-04 *
[[-0.0000, 0.0000, 1.5135],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000]])
构造一个随机初始化的矩阵:
x = torch.rand(5, 3)
print(x)
输出:
tensor([[ 0.6291, 0.2581, 0.6414],
[ 0.9739, 0.8243, 0.2276],
[ 0.4184, 0.1815, 0.5131],
[ 0.5533, 0.5440, 0.0718],
[ 0.2908, 0.1850, 0.5297]])
构造一个矩阵全为 0,而且数据类型是 long.
Construct a matrix filled zeros and of dtype long:
x = torch.zeros(5, 3, dtype=torch.long)
print(x)
输出:
tensor([[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]])
构造一个张量,直接使用数据:
x = torch.tensor([5.5, 3])
print(x)
输出:
tensor([ 5.5000, 3.0000])
创建一个 tensor 基于已经存在的 tensor。
x = x.new_ones(5, 3, dtype=torch.double)
# new_* methods take in sizes
print(x) x = torch.randn_like(x, dtype=torch.float)
# override dtype!
print(x)
# result has the same size
输出:
tensor([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=torch.float64)
tensor([[-0.2183, 0.4477, -0.4053],
[ 1.7353, -0.0048, 1.2177],
[-1.1111, 1.0878, 0.9722],
[-0.7771, -0.2174, 0.0412],
[-2.1750, 1.3609, -0.3322]])
获取它的维度信息:
print(x.size())
输出:
torch.Size([5, 3])
注意
torch.Size
是一个元组,所以它支持左右的元组操作。
操作
在接下来的例子中,我们将会看到加法操作。
加法: 方式 1
y = torch.rand(5, 3)
print(x + y)
Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])
加法: 方式2
print(torch.add(x, y))
Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])
加法: 提供一个输出 tensor 作为参数
result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)
Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])
加法: in-place
# adds x to y
y.add_(x)
print(y)
Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])
Note
注意
任何使张量会发生变化的操作都有一个前缀 ''。例如:x.copy
(y), x.t_()
, 将会改变 x
.
你可以使用标准的 NumPy 类似的索引操作
print(x[:, 1])
Out:
tensor([ 0.4477, -0.0048, 1.0878, -0.2174, 1.3609])
改变大小:如果你想改变一个 tensor 的大小或者形状,你可以使用 torch.view
:
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())
Out:
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
如果你有一个元素 tensor ,使用 .item() 来获得这个 value 。
x = torch.randn(1)
print(x)
print(x.item())
Out:
tensor([ 0.9422])
0.9422121644020081
http://pytorchchina.com/2018/12/11/pytorch-windows-install-1/
PyTorch Mac 安装教程
http://pytorchchina.com/2018/12/11/pytorch-mac-install/
PyTorch Linux 安装教程
http://pytorchchina.com/2018/12/11/pytorch-linux-install/

http://pytorchchina.com/2018/06/25/what-is-pytorch/
PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程的更多相关文章
- PyTorch 60 分钟入门教程
PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程 http://pytorchchina.com/2018/06/25/what-is-pytorch/ PyTorch 6 ...
- 知识图谱与机器学习 | KG入门 -- Part1-b 图深度学习
介绍 我们正在定义一种新的机器学习方法,专注于一种新的范式 -- Data Fabric. 在上一篇文章中,我们对机器学习给出了新的定义: 机器学习是一种自动发现Data Fabric中隐藏的&quo ...
- 深度学习动手入门:GitHub上四个超棒的TensorFlow开源项目
作者简介:akshay pai,数据科学工程师,热爱研究机器学习问题.Source Dexter网站创办人. TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程 ...
- 深度学习开发环境搭建教程(Mac篇)
本文将指导你如何在自己的Mac上部署Theano + Keras的深度学习开发环境. 如果你的Mac不自带NVIDIA的独立显卡(例如15寸以下或者17年新款的Macbook.具体可以在"关 ...
- (转)Deep Learning深度学习相关入门文章汇摘
from:http://farmingyard.diandian.com/post/2013-04-07/40049536511 来源:十一城 http://elevencitys.com/?p=18 ...
- PyTorch 60 分钟入门教程:数据并行处理
可选择:数据并行处理(文末有完整代码下载) 作者:Sung Kim 和 Jenny Kang 在这个教程中,我们将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多 ...
- pytorch入门--土堆深度学习快速入门教程
工具函数 dir函数,让我们直到工具箱,以及工具箱中的分隔区有什么东西 help函数,让我们直到每个工具是如何使用的,工具的使用方法 示例:在pycharm的console环境,输入 import t ...
- 深度学习之入门Pytorch(1)------基础
目录: Pytorch数据类型:Tensor与Storage 创建张量 tensor与numpy数组之间的转换 索引.连接.切片等 Tensor操作[add,数学运算,转置等] GPU加速 自动求导: ...
- Pyplot教程(深度学习入门3)
源地址:http://matplotlib.org/users/pyplot_tutorial.html .caret, .dropup > .btn > .caret { border- ...
随机推荐
- Linux文件属性和压缩解压
目 录 第1章 Linux系统文件的属性 1 1.1 命令ls 1 1.2 inode 2 1.3 文件属性 2 1.4 env命令 2 1.5 注意: 2 第2章 ...
- CSS--浮动与定位
*浮动布局能够实现横向多列布局. 1.在网页中,元素有三种布局模型: 1.流动模型(Flow) 2.浮动模型 (Float) 3.层模型(Layer) 流动(Flow)是默认的网页布局模式.流动布局模 ...
- 【POJ 1061】青蛙的约会(EXGCD)
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
- Leetcode 309.最佳买卖股票时机含冷冻期
最佳买卖股票时机含冷冻期 给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格. 设计一个算法计算出最大利润.在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票): 你不 ...
- 可拔插的 IOC 容器
可拔插的 IOC 容器 于是我打算自己实现一个这样的 bean 容器. 但在实现之前又想到一个 feature: 不如把实现 bean 容器的方案交给使用者选择,可以选择使用 bean 容器,也可以就 ...
- 转载:shell脚本之前的基础知识
转载地址:http://www.92csz.com/study/linux/12.htm 第十二章 学习 shell脚本之前的基础知识 日常的linux系统管理工作中必不可少的就是shell脚本,如果 ...
- 2015轻院校赛 B 迷宫 (bfs)
http://acm.zznu.edu.cn/problem.php?id=1967 这套题的有毒 我交了好多遍才对 坑:机关要按照顺序走 并且在走这个机关之前不能走这个机关 但是能穿过这个机关 ...
- ntfs格式uefi启动u盘
http://www.laomaotao.org/softhelp/syjc/925.html http://www.laomaotao.org/softhelp/wtjd/989.html http ...
- ArcGIS Engine 中的绘制与编辑
1.线段绘制 基本步骤 构建形状 1. 创建 IPoint IPoint m_Point = new PointClass(); m_Point.PutCoords(x, y); 2. 创建 IPoi ...
- python执行系统命令的几种方法
(1) os.system 这个方法是直接调用标准C的system() 函数,仅仅在一个子终端运行系统命令,而不能获取命令执行后的返回信息. import os os.system('cat /pro ...