1069: [SCOI2007]最大土地面积


Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 3629  Solved: 1432
[Submit][Status][Discuss]

Description


  在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成
的多边形面积最大。

Input


  第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。

Output


  最大的多边形面积,答案精确到小数点后3位。

Sample Input



0.5 0.5

Sample Output


1.000

HINT


数据范围 n<=2000, |x|,|y|<=100000

 

分析:


其实自己想想就可以明白,最大的四边形的四个点一定都在凸包上。
那么用graham先求出凸包。
然后就是如何求最大的四边形了。
我们枚举对角线,O(n²)的枚举,然后在对角线两侧找最大的三角形,合起来就是最大的四边形,因为是凸包,三角形的面积变化是类似于二次函数的,并且在旋转对角线的同时,最大三角形面积的那个点也在往相同方向旋转,旋转卡壳就可以了。
总复杂度O(n² )
 

贴上AC代码:


  

# include <iostream>
# include <cstdio>
# include <cstring>
# include <cmath>
# include <algorithm>
using namespace std;
struct data{
double x,y;
}node[],s[];
int n,top;
double ans;
double dis(data a,data b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
double mul(data a,data b,data c){
return (a.x - c.x) * (b.y - c.y) - (b.x - c.x) * (a.y - c.y);
}
bool cmp(data a,data b)
{
if(mul(a,b,node[]) == )return dis(a,node[]) < dis(b,node[]);
return mul(a,b,node[]) > ;
}
void Graham(){
int k = ;
for(int i = ;i <= n;i++)
if((node[k].y > node[i].y) || (node[k].y == node[i].y && node[k].x > node[i].x))k = i;
swap(node[k],node[]);
sort(node + ,node + n + ,cmp);
s[++top] = node[],s[++top] = node[];
for(int i = ;i <= n;i++){
while(top && mul(node[i],s[top],s[top - ]) >= )top--;
s[++top] = node[i];
}
}
void rc(){
s[top + ] = node[];
int a,b;
for(int x = ;x <= top;x++){
a = x % top + ;b = (x + ) % top + ;
for(int y = x + ;y <= top;y++){
while(a % top + != y && -mul(s[y],s[a + ],s[x]) > -mul(s[y],s[a],s[x]))a = a % top + ;
while(b % top + != x && -mul(s[b + ],s[y],s[x]) > -mul(s[b],s[y],s[x]))b = b % top + ;
ans = max(-mul(s[y],s[a],s[x]) + -mul(s[b],s[y],s[x]),ans);
}
}
}
int main(){
scanf("%d",&n);
for(int i = ;i <= n;i++)scanf("%lf %lf",&node[i].x,&node[i].y);
Graham();rc();
printf("%.3f",ans / );
return ;
}

[Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)的更多相关文章

  1. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

  2. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  3. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  4. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  5. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  6. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  7. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  8. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  9. [USACO2003][poj2187]Beauty Contest(凸包+旋转卡壳)

    http://poj.org/problem?id=2187 题意:老题了,求平面内最远点对(让本渣默默想到了悲剧的AHOI2012……) 分析: nlogn的凸包+旋转卡壳 附:http://www ...

  10. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

随机推荐

  1. 编译安装LAMP之php(fpm模块)

    一,准备工作实验平台为CentOS6.6,先下载所需的安装包,我使用的是php-5.4.26.tar.gz,下载地址 http://mirrors.sohu.com/php/ 编译安装的目录:/usr ...

  2. 第16周翻译:SQL Server中的事务日志管理,级别3:事务日志、备份和恢复

    源自: http://www.sqlservercentral.com/articles/Stairway+Series/73779/ 作者: Tony Davis, 2011/09/07 翻译:刘琼 ...

  3. npm与cnpm

    npm介绍 说明:npm(node package manager)是nodejs的包管理器,用于node插件管理(包括安装.卸载.管理依赖等) 使用npm安装插件:命令提示符执行npm instal ...

  4. eject - 弹出可移动介质

    SYNOPSIS(总览) eject -h.breject [-vnrsfq] [<name>] eject [-vn] -d.breject [-vn] -a on|off|1|0 [& ...

  5. 暑假集训 || 2-SAT

    推荐论文:https://blog.csdn.net/zixiaqian/article/details/4492926 2-SAT问题是2判定性问题,给出n个集合,每个集合中有两个元素,两个元素之一 ...

  6. ES6 第一章 let和const命令 具体参照http://es6.ruanyifeng.com

    1.let类似于var用用来定义变量 1)let没有预解析,不存在变量提升 // var 的情况 console.log(foo); // 输出undefined var foo = 2; // le ...

  7. 【2018 CCPC网络赛】1003 - 费马小定理

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6440 这题主要是理解题意: 题意:定义一个加法和乘法,使得 (m+n)p = mp+np; 其中给定 ...

  8. InnoDB INFORMATION_SCHEMA Tables about Compression

    InnoDB INFORMATION_SCHEMA Tables about Compression 了解关于压缩的InnoDB INFORMATION_SCHEMA表,可以深入了解压缩的整体运行情况 ...

  9. RHEL6.5 DHCP服务器搭建

    RHEL6.5 DHCP服务器搭建: DHCP服务器是用来分配给其它客户端IP地址用的,在RHEL 6.5中DHCP服务器搭建方法如下: 第一步,通过yum安装dhcp服务: 命令:yum insta ...

  10. CSS3---关于文本

    1.text-overflow用来设置是否使用一个省略标记(...)标示对象内文本的溢出. 2.但是text-overflow只是用来说明文字溢出时用什么方式显示,要实现溢出时产生省略号的效果,还须定 ...