codeforces 673D D. Bear and Two Paths(构造)
题目链接:
2 seconds
256 megabytes
standard input
standard output
Bearland has n cities, numbered 1 through n. Cities are connected via bidirectional roads. Each road connects two distinct cities. No two roads connect the same pair of cities.
Bear Limak was once in a city a and he wanted to go to a city b. There was no direct connection so he decided to take a long walk, visiting each city exactly once. Formally:
- There is no road between a and b.
- There exists a sequence (path) of n distinct cities v1, v2, ..., vn that v1 = a, vn = b and there is a road between vi and vi + 1 for
.
On the other day, the similar thing happened. Limak wanted to travel between a city c and a city d. There is no road between them but there exists a sequence of n distinct cities u1, u2, ..., un that u1 = c, un = d and there is a road between ui and ui + 1 for
.
Also, Limak thinks that there are at most k roads in Bearland. He wonders whether he remembers everything correctly.
Given n, k and four distinct cities a, b, c, d, can you find possible paths (v1, ..., vn) and (u1, ..., un) to satisfy all the given conditions? Find any solution or print -1 if it's impossible.
The first line of the input contains two integers n and k (4 ≤ n ≤ 1000, n - 1 ≤ k ≤ 2n - 2) — the number of cities and the maximum allowed number of roads, respectively.
The second line contains four distinct integers a, b, c and d (1 ≤ a, b, c, d ≤ n).
Print -1 if it's impossible to satisfy all the given conditions. Otherwise, print two lines with paths descriptions. The first of these two lines should contain n distinct integers v1, v2, ..., vn where v1 = a and vn = b. The second line should contain n distinct integers u1, u2, ..., unwhere u1 = c and un = d.
Two paths generate at most 2n - 2 roads: (v1, v2), (v2, v3), ..., (vn - 1, vn), (u1, u2), (u2, u3), ..., (un - 1, un). Your answer will be considered wrong if contains more than k distinct roads or any other condition breaks. Note that (x, y) and (y, x) are the same road.
7 11
2 4 7 3
2 7 1 3 6 5 4
7 1 5 4 6 2 3
1000 999
10 20 30 40
-1 题意: 给出n个节点,然后给出两条路线的起点和终点,要求你构造一个无向图,使无向图中a,b之间和c,d之间均无直接相连的边,且要求这个图的边的条数不超过k; 思路: 发现n==4时怎么都不可能满足;
可以构造这样的无向图
第一条路线ac...db; 第二条路线ca...bd;
这样的边是n+1条,是最少的了; AC代码:
#include <bits/stdc++.h>
using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
const LL mod=1e9+;
const double PI=acos(-1.0);
const int inf=0x3f3f3f3f;
const int N=1e5+;
int n,k,a,b,c,d;
int vis[];
int main()
{
scanf("%d%d",&n,&k);
scanf("%d%d%d%d",&a,&b,&c,&d);
if(k<n+||n==)cout<<"-1"<<"\n";
else
{
vis[a]=;
vis[b]=;
vis[c]=;
vis[d]=;
printf("%d %d ",a,c);
for(int i=;i<=n;i++)
{
if(!vis[i])
{
printf("%d ",i);
}
}
printf("%d %d\n",d,b);
printf("%d %d ",c,a);
for(int i=;i<=n;i++)
{
if(!vis[i])
{
printf("%d ",i);
}
}
printf("%d %d \n",b,d); } return ;
}
codeforces 673D D. Bear and Two Paths(构造)的更多相关文章
- Codeforces Round #351 (VK Cup 2016 Round 3, Div. 2 Edition) D. Bear and Two Paths 构造
D. Bear and Two Paths 题目连接: http://www.codeforces.com/contest/673/problem/D Description Bearland has ...
- D. Bear and Two Paths(贪心构造)
D. Bear and Two Paths time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- VK Cup 2016 D. Bear and Two Paths 模拟
D. Bear and Two Paths time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)
[Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...
- Codeforces Round #351 (VK Cup 2016 Round 3, Div. 2 Edition) D Bear and Two Paths
题目链接: http://codeforces.com/contest/673/problem/D 题意: 给四个不同点a,b,c,d,求是否能构造出两条哈密顿通路,一条a到b,一条c到d. 题解: ...
- Codeforces 1144F Graph Without Long Directed Paths (DFS染色+构造)
<题目链接> 题目大意:给定一个无向图,该无向图不含自环,且无重边.现在要你将这个无向图定向,使得不存在任何一条路径长度大于等于2.然后根输入边的顺序,输出构造的有向图.如果构造的边与输入 ...
- Educational Codeforces Round 7 D. Optimal Number Permutation 构造题
D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...
- Codeforces Gym 100342H Problem H. Hard Test 构造题,卡迪杰斯特拉
Problem H. Hard TestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...
- Codeforces Round #339 (Div. 1) C. Necklace 构造题
C. Necklace 题目连接: http://www.codeforces.com/contest/613/problem/C Description Ivan wants to make a n ...
随机推荐
- 解决U3D4.1.5或以上无法启动MONODEV的方法
通常会报这样的错误 System.EntryPointNotFoundException: Unable to find an entry point named 'gtksharp_list_get ...
- CodeForces - 813C The Tag Game (树的dfs遍历)
[传送门]http://codeforces.com/problemset/problem/813/C [题目大意]两个人玩游戏,一个人跑一个人追,轮流决策,可以走也可以不走.给你一棵树,想要从某个结 ...
- codevs3249搭积木
3249 搭积木 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description Petya有一个A×B×C的长方体积木,积 ...
- CodeBlock换肤
CodeBlock换肤 conf文件下载地址 我的是在D:\Program Files (x86)\CodeBlocks\AppData\codeblocks\default.conf 然后替换本地的 ...
- java队列--queue详细分析
---恢复内容开始--- Queue:基本上一个队列就是一个先入先出(FIFO)的数据结构 Queue接口与List.Set同一级别,都是继承了Collection接口,LinkedList实现了Li ...
- Ubuntu 16.04安装Mac OS 12虚拟机资源(没成功,但资源还是可以用)
整理的Mac OS 12虚拟机资源.装虚拟机基本是按这样的套路: 1.先装VM 2.破解VM使其支持Mac OS 12,这个脚本基本是全平台支持,可以看里面的教程文档. 3.用镜像安装系统. 资源: ...
- 高性能JS-DOM
用脚本进行DOM操作的代价是很昂贵的,它是富web应用中最常见的性能瓶颈.主要有以下三种问题: 访问和修改DOM元素 修改DOM元素的样式导致repaint和reflow 通过DOM事件处理与用户进行 ...
- Spring拦截器从Request中获取Json格式的数据
7 package com.newpp.core.interceptor; 8 9 import java.io.BufferedReader; 10 import java.io.ByteArray ...
- [转]JAVA集合
1.线程安全 线程安全就是说多线程访问同一代码,不会产生不确定的结果. 2.List类和Set类List类和Set类是Collection集合接口的子接口.Set子接口:无序,不允许重复.List子接 ...
- Codeforces Round #178 (Div. 2) B .Shaass and Bookshelf
Shaass has n books. He wants to make a bookshelf for all his books. He wants the bookshelf's dimensi ...