一.疑问

这几天一直纠结于一个问题:

同样的代码,为什么在keras的0.3.3版本中,拟合得比较好,也没有过拟合,验证集准确率一直高于训练准确率. 但是在换到keras的1.2.0版本中的时候,就过拟合了,验证误差一直高于训练误差

二.答案

今天终于发现原因了,原来是这两个版本的keras的optimezer实现不一样,但是它们的默认参数是一样的,因为我代码中用的是adam方法优化,下面就以optimezer中的adam来举例说明:

1.下面是keras==0.3.3时,其中optimezer.py中的adam方法实现:

 class Adam(Optimizer):
'''Adam optimizer. Default parameters follow those provided in the original paper. # Arguments
lr: float >= . Learning rate.
beta_1/beta_2: floats, < beta < . Generally close to .
epsilon: float >= . Fuzz factor. # References
- [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
'''
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-,
*args, **kwargs):
super(Adam, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable()
self.lr = K.variable(lr)
self.beta_1 = K.variable(beta_1)
self.beta_2 = K.variable(beta_2) def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [(self.iterations, self.iterations+.)] t = self.iterations +
lr_t = self.lr * K.sqrt( - K.pow(self.beta_2, t)) / ( - K.pow(self.beta_1, t)) for p, g, c in zip(params, grads, constraints):
# zero init of moment
m = K.variable(np.zeros(K.get_value(p).shape))
# zero init of velocity
v = K.variable(np.zeros(K.get_value(p).shape)) m_t = (self.beta_1 * m) + ( - self.beta_1) * g
v_t = (self.beta_2 * v) + ( - self.beta_2) * K.square(g)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append((m, m_t))
self.updates.append((v, v_t))
self.updates.append((p, c(p_t))) # apply constraints
return self.updates def get_config(self):
return {"name": self.__class__.__name__,
"lr": float(K.get_value(self.lr)),
"beta_1": float(K.get_value(self.beta_1)),
"beta_2": float(K.get_value(self.beta_2)),
"epsilon": self.epsilon}

2.下面是keras==1.2.0时,其中optimezer.py中的adam方法实现:

 class Adam(Optimizer):
'''Adam optimizer. Default parameters follow those provided in the original paper. # Arguments
lr: float >= . Learning rate.
beta_1/beta_2: floats, < beta < . Generally close to .
epsilon: float >= . Fuzz factor. # References
- [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
'''
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=1e-, decay=., **kwargs):
super(Adam, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable()
self.lr = K.variable(lr)
self.beta_1 = K.variable(beta_1)
self.beta_2 = K.variable(beta_2)
self.decay = K.variable(decay)
self.inital_decay = decay def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, )] lr = self.lr
if self.inital_decay > :
lr *= (. / (. + self.decay * self.iterations)) t = self.iterations +
lr_t = lr * K.sqrt(. - K.pow(self.beta_2, t)) / (. - K.pow(self.beta_1, t)) shapes = [K.get_variable_shape(p) for p in params]
ms = [K.zeros(shape) for shape in shapes]
vs = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs):
m_t = (self.beta_1 * m) + (. - self.beta_1) * g
v_t = (self.beta_2 * v) + (. - self.beta_2) * K.square(g)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t)) new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon}
base_config = super(Adam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

读代码对比,可发现这两者实现方式有不同,而我的代码中一直使用的是adam的默认参数,所以才会结果不一样.

三.解决

要避免这一问题可用以下方法:

1.在自己的代码中,要对优化器的参数给定,不要用默认参数.

adam = optimizers.Adam(lr=1e-)

但是,在keras官方文档中,明确有说明,在用这些优化器的时候,最好使用默认参数,所以也可采用第2种方法.

2.优化函数中的优化方法要给定,也就是在训练的时候,在fit函数中的callbacks参数中的schedule要给定.

比如:

 # Callback that implements learning rate schedule
schedule = Step([], [1e-, 1e-]) history = model.fit(X_train, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_test,Y_test),
callbacks=[
schedule,
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=,save_best_only=True, mode='auto')# 该回调函数将在每个epoch后保存模型到filepath
# ,keras.callbacks.EarlyStopping(monitor='val_loss', patience=, verbose=, mode='auto')# 当监测值不再改善时,该回调函数将中止训练.当early stop被激活(如发现loss相比上一个epoch训练没有下降),则经过patience个epoch后停止训练
],
verbose=, shuffle=True)

其中Step函数如下:

 class Step(Callback):

     def __init__(self, steps, learning_rates, verbose=):
self.steps = steps
self.lr = learning_rates
self.verbose = verbose def change_lr(self, new_lr):
old_lr = K.get_value(self.model.optimizer.lr)
K.set_value(self.model.optimizer.lr, new_lr)
if self.verbose == :
print('Learning rate is %g' %new_lr) def on_epoch_begin(self, epoch, logs={}):
for i, step in enumerate(self.steps):
if epoch < step:
self.change_lr(self.lr[i])
return
self.change_lr(self.lr[i+]) def get_config(self):
config = {'class': type(self).__name__,
'steps': self.steps,
'learning_rates': self.lr,
'verbose': self.verbose}
return config @classmethod
def from_config(cls, config):
offset = config.get('epoch_offset', )
steps = [step - offset for step in config['steps']]
return cls(steps, config['learning_rates'],
verbose=config.get('verbose', ))

Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结的更多相关文章

  1. Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题

    一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的 ...

  2. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

  3. Top Deep Learning Projects in github

    Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by sta ...

  4. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  5. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  6. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

    https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一 ...

  7. How To Improve Deep Learning Performance

    如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...

  8. Unsupervised Feature Learning and Deep Learning(UFLDL) Exercise 总结

    7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到 ...

  9. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

随机推荐

  1. BZOJ 4001 [TJOI2015]概率论 ——找规律

    题目太神了,证明还需要用到生成函数. 鉴于自己太菜,直接抄别人的结果好了. #include <map> #include <cmath> #include <queue ...

  2. Spoj-NETADMIN Smart Network Administrator

    The citizens of a small village are tired of being the only inhabitants around without a connection ...

  3. Spring JdbcTemplate 与 事务管理 学习

    Spring的JDBC框架能够承担资源管理和异常处理的工作,从而简化我们的JDBC代码, 让我们只需编写从数据库读写数据所必需的代码.Spring把数据访问的样板代码隐藏到模板类之下, 结合Sprin ...

  4. Spring-IOC源码解读2.2-BeanDefinition的载入和解析过程

    1. 对IOC容器来说这个载入过程就像是相当于把BeanDefinition定义的信息转化成Spring内部表示的数据结构.容器对bean的管理和依赖注入过程都是通过对其持有的BeanDefiniti ...

  5. LVM 类型的 Storage Pool

    LVM 类型的 Storage Pool 不仅一个文件可以分配给客户机作为虚拟磁盘,宿主机上 VG 中的 LV 也可以作为虚拟磁盘分配给虚拟机使用. 不过,LV 由于没有磁盘的 MBR 引导记录,不能 ...

  6. OC-Runtime温故知新

    每个java应用程序都有一个runtime类实例,使应用程序能够与其运行的环境相连接.可以通过getRuntime 方法获取当前运行时,应用程序不能自己创建runtime类实例.Runtime 没有构 ...

  7. CentOS 7.5 安装Docker 教程

    Docker简介 Docker是一个开源的容器引擎,它有助于更快地交付应用.Docker可将应用程序和基础设施层隔离,并且能将基础设施当作程序一样进行管理. 使用Docker可更快地打包.测试以及部署 ...

  8. 存code

    #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> us ...

  9. 使用Google浏览器做真机页面调试

    步骤1: 从Windows,Mac或Linux计算机远程调试Android设备上的实时内容.本教程将教您如何: 设置您的Android设备进行远程调试,并从开发机器中发现它.从您的开发机器检查和调试A ...

  10. BUPT复试专题—统计节点个数(2013)

    题目描述 给出一棵有向树,一共有n个节点,如果一个节点的度(入度+出度)不小于它所有儿子以及它父亲的度(如果存在父亲或儿子),那么我们称这个节点为p节点,现在你的任务是统计p节点的个数. 如样例,第一 ...