题目链接:http://poj.org/problem?id=3045

Cow Acrobats
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5713   Accepted: 2151

Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

Input

* Line 1: A single line with the integer N.

* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

Hint

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.

Source

 
 
 
题解:
2.自己的思考:根据承受力来排序,体重可能会走向极端;根据体重来排序,承受力也可能会走向极端。所以片面的考虑是得不到结果的(做题都能映射出人生,还能说些什么),既然体重和承受力共同影响这结果,所以就需要综合两者来考虑,即两者之和。
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e5+; struct node
{
int w, s;
bool operator<(const node &x)const{
return (w+s)<(x.w+x.s);
}
}a[MAXN]; int main()
{
int n;
while(scanf("%d", &n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d%d", &a[i].w, &a[i].s);
sort(a+, a++n);
LL ans = -INF, tot = ;
for(int i = ; i<=n; i++)
{
ans = max(ans, tot-a[i].s);
tot += a[i].w;
}
printf("%lld\n", ans);
}
}

POJ3045 Cow Acrobats —— 思维证明的更多相关文章

  1. poj3045 Cow Acrobats (思维,贪心)

    题目: poj3045 Cow Acrobats 解析: 贪心题,类似于国王游戏 考虑两个相邻的牛\(i\),\(j\) 设他们上面的牛的重量一共为\(sum\) 把\(i\)放在上面,危险值分别为\ ...

  2. POJ3045 Cow Acrobats 2017-05-11 18:06 31人阅读 评论(0) 收藏

    Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4998   Accepted: 1892 Desc ...

  3. POJ-3045 Cow Acrobats (C++ 贪心)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  4. [USACO2005][POJ3045]Cow Acrobats(贪心)

    题目:http://poj.org/problem?id=3045 题意:每个牛都有一个wi和si,试将他们排序,每头牛的风险值等于前面所有牛的wj(j<i)之和-si,求风险值最大的牛的最小风 ...

  5. poj3045 Cow Acrobats(二分最大化最小值)

    https://vjudge.net/problem/POJ-3045 读题后提取到一点:例如对最底层的牛来说,它的崩溃风险=所有牛的重量-(底层牛的w+s),则w+s越大,越在底层. 注意范围lb= ...

  6. POJ3045 Cow Acrobats

    题意 Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join t ...

  7. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  8. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

  9. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

随机推荐

  1. UVa10234 Race

    递推,设有i个人排在第一名,剩下的人排在后面,方案有f[i]种,则f[i]=sum(c[n][i]*f[n-i]) 1<=i<=n /*by SilverN*/ #include<a ...

  2. 【2017YYHS WC】

    因为本葳蕤分数太低去不了WC,只能同去WC的各位大爷一起训练一波,就称作是YYHS WC吧,其实就是WC难度的多校 day1:早上8:30考的试,下午1:00去吃中饭 T1:考场打得暴力结果矩阵乘法后 ...

  3. Python入门--13--递归

    什么是递归: 有调用函数自身的行为 有一个正确的返回条件 设置递归的深度: import sys sys.setrecursionlimit(10000) #可以递归一万次 用普通的方法也就是非递归版 ...

  4. centos7 搭建hadoop

    参考文档:http://blog.csdn.net/xiaoxiangzi222/article/details/52757168 https://waylau.com/centos-7-instal ...

  5. C# 用this修饰符为原始类型扩展方法

    特点:1.静态类 2.静态方法 3.第一个参数前加this 例如:public static List<T> ToList<T>(this string Json),就是为th ...

  6. java中简单内存计算

    今天面试遇到一个问题,假设一个类中只声明一个int类型,那么这个对象多大,这里先写出解决方案,首先引入内存计算工具lucene-core, <dependency> <groupId ...

  7. JS标签获取另一个页面传过来的href值

    a href=b.html?id=楼主>B页面</a>b.html中的获取函数:function getParam(){C1=window.location.href.split(& ...

  8. 春哥的nginx systemtap调试脚本简单介绍

    http://card.weibo.com/article/h5/s#cid=2304185311ad2d0102v9gd&vid=0&extparam=&from=11100 ...

  9. 自动化运维工具Fabric - 密码管理(env.password and ssh key)

    在使用 Fabric 的过程中,如果大批量服务器处理的话,我们就需要针对配置主机的密码,每台主机的密码相同还好,不同的话,就需要针对不同的主机做配置了,以下有两种配置方式 注:本文主要参考官方文档 P ...

  10. JNI之—— Eclipse配置C/C++开发环境

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46622173 开发环境:Eclipse3.2.CDT3.1.MinGW5.1 1. ...