题目描述

给出两个n*n的矩阵,m次询问它们的积中给定子矩阵的数值和。

输入

第一行两个正整数n,m。
接下来n行,每行n个非负整数,表示第一个矩阵。
接下来n行,每行n个非负整数,表示第二个矩阵。
接下来m行,每行四个正整数a,b,c,d,表示询问第一个矩阵与第二个矩阵的积中,以第a行第b列与第c行第d列为顶点的子矩阵中的元素和。

输出

对每次询问,输出一行一个整数,表示该次询问的答案。

样例输入

3 2
1 9 8
3 2 0
1 8 3
9 8 4
0 5 15
1 9 6
1 1 3 3
2 3 1 2

样例输出

661
388


题解

前缀和

不妨设a<=c,b<=d,那么$\ \ \ \sum\limits_{i=a}^c\sum\limits_{j=b}^dR[i][j]\\=\sum\limits_{i=a}^c\sum\limits_{j=b}^d\sum\limits_{k=1}^nP[i][k]·Q[k][j]\\=\sum\limits_{k=1}^n(\sum\limits_{i=a}^cP[i][k])·(\sum\limits_{j=b}^dQ[k][j])\\=\sum\limits_{k=1}^n(sumP[c][k]-sumP[a-1][k])(sumQ[k][d]-sumQ[k][b-1])$

时间复杂度$O(nm)$,可过。

#include <cstdio>
#include <algorithm>
using namespace std;
#define N 2010
int p[N][N] , q[N][N] , sp[N][N] , sq[N][N];
inline int read()
{
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = (ret << 3) + (ret << 1) + ch - '0' , ch = getchar();
return ret;
}
int main()
{
int n , m , i , j , a , b , c , d;
long long ans;
n = read() , m = read();
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
a = read() , sp[i][j] = sp[i - 1][j] + a;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
a = read() , sq[i][j] = sq[i][j - 1] + a;
while(m -- )
{
a = read() , b = read() , c = read() , d = read();
if(a > c) swap(a , c);
if(b > d) swap(b , d);
ans = 0;
for(i = 1 ; i <= n ; i ++ ) ans += (long long)(sp[c][i] - sp[a - 1][i]) * (sq[i][d] - sq[i][b - 1]);
printf("%lld\n" , ans);
}
return 0;
}

【bzoj2901】矩阵求和 前缀和的更多相关文章

  1. [bzoj2901]矩阵求和

    题目大意:给出两个$n\times n$的矩阵,$m$次询问它们的积中给定子矩阵的数值和. 题解:令为$P\times Q=R$ $$\begin{align*}&\sum\limits_{i ...

  2. BZOJ_2901_矩阵求和_前缀和

    BZOJ_2901_矩阵求和_前缀和 Description 给出两个n*n的矩阵,m次询问它们的积中给定子矩阵的数值和. Input 第一行两个正整数n,m. 接下来n行,每行n个非负整数,表示第一 ...

  3. BZOJ 2901: 矩阵求和

    2901: 矩阵求和 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 411  Solved: 216[Submit][Status][Discuss] ...

  4. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  5. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  6. UVA 11149-Power of Matrix(等比矩阵求和)

    给定一个矩阵A 要求A + A^2 + A^3 +…. A^k: 对于到n的等比矩阵求和 如果n是偶数:  如果n是奇数:  #include<stdio.h> #include<s ...

  7. HDU 6336 (规律 + 二维矩阵的前缀和妙用)

    题目 给出长度为n 的A矩阵 , 按 int cursor = 0; for (int i = 0; ; ++i) { for (int j = 0; j <= i; ++j) { M[j][i ...

  8. YTU 2442: C++习题 矩阵求和--重载运算符

    2442: C++习题 矩阵求和--重载运算符 时间限制: 1 Sec  内存限制: 128 MB 提交: 1457  解决: 565 题目描述 有两个矩阵a和b,均为2行3列.求两个矩阵之和.重载运 ...

  9. YTU 2640: 编程题:运算符重载---矩阵求和

    2640: 编程题:运算符重载---矩阵求和 时间限制: 1 Sec  内存限制: 128 MB 提交: 484  解决: 190 题目描述 /* 有两个矩阵a和b,均为2行3列.求两个矩阵之和. 重 ...

随机推荐

  1. 破解MySQL和修改mysql的密码

    /etc/init.d/mysql stop mysqld_safe --user=mysql --skip-grant-tables --skip-networking & mysql -u ...

  2. Nginx性能优化参考

    nginx性能优化参考 1)调整配置文件中的配置项的值(配置文件:nginx.conf) worker_processes auto;开启的进程数,一般配置为跟逻辑CPU核数一样worker_rlim ...

  3. (三)SpringMVC之常用注解

    SpringMVC的常用注解 注解 说明 @Controller 用于说明这个类是一个控制器 @RequestMapping 用于注释一个控制器类或者控制器类的方法 @RequestParam 用于将 ...

  4. leetcode_1095. Find in Mountain Array_[Binary Search]

    https://leetcode.com/problems/find-in-mountain-array/ 题意:给定一个MountainArray(定义见题目),找到其中最早出现的target值的下 ...

  5. 万事先问『为什么』 what why how

    万事先问『为什么』! 遇到问题时,很多人的行为模式顺序是,先问『做什么』,『怎么做』,他们从来不问『为什么』,他们对根源性问题很模糊. 而聪明人则是先问『为什么』,再去构建『怎么做』,而『做什么』就是 ...

  6. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  7. 部署Geoserver tomcat部署geoserver

    1. 下载Geoserver War 包. 2.把geoserver.war文件放到 webapps文件夹下 3.添加Tomcat 用户 解压文件conf文件夹下 修改tomcat-users.xml ...

  8. xheditor的实例程序—类似word的编辑器

    编辑器工具栏:类似word的编辑器 1.1.下载,兼容性 xhEditor官方网站地址为:http://xheditor.com/,打开右上角的免费下载 | 参数向导链接,即可找到最新版本的下载地址. ...

  9. eclips配置

    新建空workspace import... configMathod:main:project:eFT-Debug@eFTSlnC/C++ Aplication /media/B/testspa2. ...

  10. UIScreen, UIWindow

    模仿书上或网上的例子,每次最开始就是 在 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions: ...