[SCOI2016]围棋
Description
近日,谷歌研发的围棋AI—AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑。与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积神经网络模型。在卷积神经网络模型中,棋盘上每一块特定大小的区域都被当做一个窗口。例如棋盘的大小为5×6,窗口大小为2×4,那么棋盘中共有12个窗口。此外,模型中预先设定了一些模板,模板的大小与窗口的大小是一样的。下图展现了一个5×6的棋盘和两个2×4的模板。对于一个模板,只要棋盘中有某个窗口与其完全匹配,我们称这个模板是被激活的,否则称这个模板没有被激活。例如图中第一个模板就是被激活的,而第二个模板就是没有被激活的。我们要研究的问题是:对于给定的模板,有多少个棋盘可以激活它。为了简化问题,我们抛开所有围棋的基本规则,只考虑一个n×m的棋盘,每个位置只能是黑子、白子或无子三种情况,换句话说,这样的棋盘共有3n×m种。此外,我们会给出q个2×c的模板。我们希望知道,对于每个模板,有多少种棋盘可以激活它。强调:模板一定是两行的。
Input
输入数据的第一行包含四个正整数n,m,c和q,分别表示棋盘的行数、列数、模板的列数和模板的数量。随后2×q行,每连续两行描述一个模板。其中,每行包含c个字符,字符一定是‘W’,‘B’或‘X’中的一个,表示白子、黑子或无子三种情况的一种。N<=100,M<=12,C<=6,Q<=5
Output
输出应包含q行,每行一个整数,表示符合要求的棋盘数量。由于答案可能很大,你只需要输出答案对1,000,000,007取模后的结果即可。
Sample Input
3 1 1 2
B
W
B
B
Sample Output
6
5
这题写的真是神清气爽……题解真是神仙写法
首先看范围,\(m\)辣么小肯定要状压
考虑使用补集转化,求没有任何一个子矩阵满足匹配条件的棋盘种数,然后我们暴力状压上一行状态,逐行转移,复杂度\(O(n*3^m+3^{2*m})\),直接TLE
改一下状压状态,因为我们只需要关系是否匹配,并不需要关心黑白或者无,所以我们可以用二进制状压
考虑使用轮廓线DP解决这个问题,设\(f_{i,j,S,x,y}\)表示当前考虑到第\(i\)行第\(j\)列,\(S\)记录轮廓线上每个点能否匹配完模板的第一行(\(S\)上第\(k\)位为1表示轮廓线上第\(k\)位,将模板第一行最后一个格子放置在此后,模板第一行颜色不会与已决策棋盘区域发生混乱),目前匹配到模板第一行的第\(x\)列,第二行的第\(y\)列
然后前两维直接滚动掉,然后我们用KMP预处理出模板两行的失配函数,匹配的时候直接暴力枚举转移即可
每当枚举到新的一行时,要将上一行的值全部转移过来,具体实现可以看代码
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1;char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=(1<<12)*216,Mod=1e9+7,limit=235417;
struct S1{
int S[N+10],x[N+10],y[N+10],v[N+10];
int stack[N+10],top;
void insert(int s,int _x,int _y,int val){
ui res=s*limit*limit+_x*limit+_y; res%=N;
if (!v[res]) stack[++top]=res,S[top]=s,x[top]=_x,y[top]=_y;
v[res]=(v[res]+val)%Mod;
}
void clear(){while (top) v[stack[top--]]=0;}
}f[2];
int v[2][10],Nxt[2][10],Fail[2][10][5];
char s[2][10];
int T(char x){return x=='B'?1:x=='W'?2:3;}
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=1ll*a*a%Mod) if (b&1) res=1ll*res*a%Mod;
return res;
}
int main(){
int n=read(),m=read(),c=read(),q=read();
while (q--){
scanf("%s",s[0]+1);
scanf("%s",s[1]+1);
for (int i=1;i<=c;i++) v[0][i]=T(s[0][i]);
for (int i=1;i<=c;i++) v[1][i]=T(s[1][i]);
memset(Nxt,0,sizeof(Nxt));
Nxt[0][0]=Nxt[1][0]=-1;
for (int k=0;k<2;k++){
for (int i=2,j=0;i<=c;i++){
while (~j&&v[k][i]!=v[k][j+1]) j=Nxt[k][j];
Nxt[k][i]=++j;
}
}
for (int k=0;k<2;k++){
for (int i=0;i<=c;i++){
for (int j=i,x=1;x<=3;x++,j=i){
while (~j&&x!=v[k][j+1]) j=Nxt[k][j];
Fail[k][i][x]=++j;
}
}
}
int p=0; f[p].clear();
f[p].insert(0,0,0,1);
for (int i=1;i<=n;i++){
for (int l=1;l<=f[p].top;l++) f[p].x[l]=f[p].y[l]=0;
for (int j=1;j<=m;j++){
f[p^=1].clear();
for (int l=1;l<=f[p^1].top;l++){
int S=f[p^1].S[l],x=f[p^1].x[l],y=f[p^1].y[l];
for (int k=1;k<=3;k++){
int a=Fail[0][x][k],b=Fail[1][y][k];
int tmp=(b==c)<<(j-1),sta=S;
if (S&tmp) continue;
if (sta>>(j-1)&1) sta^=1<<(j-1);
if (a==c) sta^=1<<(j-1);
f[p].insert(sta,a,b,f[p^1].v[f[p^1].stack[l]]);
}
}
}
}
int Ans=mlt(3,n*m);
for (int i=1;i<=f[p].top;i++) Ans=(Ans-f[p].v[f[p].stack[i]])%Mod;
printf("%d\n",(Ans+Mod)%Mod);
}
return 0;
}
[SCOI2016]围棋的更多相关文章
- BZOJ4572: [Scoi2016]围棋
Description 近日,谷歌研发的围棋AI—AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑. 与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积 ...
- 2019.03.25 bzoj4572: [Scoi2016]围棋(轮廓线dp)
传送门 题解可以参见zjjzjjzjj神仙的,写的很清楚. 代码: #include<bits/stdc++.h> #define ri register int using namesp ...
- BZOJ.4572.[SCOI2016]围棋(轮廓线DP)
BZOJ 洛谷 \(Description\) 给定\(n,m,c\).\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过.棋盘的每个格子有三种状态. \( ...
- 4572: [Scoi2016]围棋 轮廓线DP KMP
国际惯例的题面:这种题目显然DP了,看到M这么小显然要状压.然后就是具体怎么DP的问题.首先我们可以暴力状压上一行状态,然后逐行转移.复杂度n*3^m+3^(m*2),显然过不去. 考虑状态的特殊性, ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 一类巧妙利用利用失配树的序列DP
I.导入 求长度为\(\text{len}\)的包含给定连续子串\(\text{T}\)的 0/1 串的个数.(\(|T|<=15\)) 通常来说这种题目应该立刻联想到状压 DP 与取反集--这 ...
- 「SCOI2016」围棋 解题报告
「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...
- 【bzoj4572 scoi2016】围棋
题目描述 近日,谷歌研发的围棋AI—AlphaGo以4:1的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑. 与传统的搜索式AI不同,AlphaGo使用了最近十分流行的卷积神经网络模型. ...
- 【LOJ】#2017. 「SCOI2016」围棋
题解 考虑到状态数比较复杂,其实我们需要轮廓线dp-- 我们设置\(f[x][y][S][h][k]\)为考虑到第(x,y)个格子,S是轮廓线上的匹配状态,是二进制,如果一位是1表示这一位匹配第一行匹 ...
随机推荐
- PCH in Xcode 6
本文转载至 http://blog.csdn.net/wbdwsqwwn/article/details/40476151 新建文件 ⌘+N 选择 iOS/Mac -> Other -> ...
- MySQL 数据库 的安装和基本管理
03-MySql安装和基本管理 本节掌握内容: mysql的安装.启动 mysql破解密码 统一字符编码 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Orac ...
- 《写给大忙人看的java》笔记--基本的编程结构
1.字符串是UTF-16编码中的Unicode编码点的序列 2.绑定System.in的Scanner可以读取终端输入: Scanner sc = new Scanner(System.in); 3. ...
- TreeSet实现Comparator接口的排序算法的分析
为了方便,用lambda表达式代替comparator接口 例子如下: public static void main(String[] args) { TreeSet<Integer> ...
- iconfont的图文混排
最近在使用iconfont排版,但是发现完全没法混到textarea中. 希望借助 contentEditable 解决这个问题
- JS中的存储机制
一.堆和栈的介绍 1.堆和队,是先进先出:栈,是先进后出,就跟水桶差不多: 2.存储速度:堆和队的存储速度较慢,栈的存储速度较快,会自动释放: 二.js中存储的类型 1.堆,一般用于复杂数据类型,存储 ...
- HDU3081 Marriage Match II —— 传递闭包 + 二分图最大匹配 or 传递闭包 + 二分 + 最大流
题目链接:https://vjudge.net/problem/HDU-3081 Marriage Match II Time Limit: 2000/1000 MS (Java/Others) ...
- YTU 2832: 使用指针访问数组元素--程序填空
2832: 使用指针访问数组元素--程序填空 时间限制: 1 Sec 内存限制: 128 MB 提交: 328 解决: 160 题目描述 输入10个整数值到数组中,使用指针来完成对这10个数组元素 ...
- MYSQL进阶学习笔记四:MySQL存储过程之定义条件,处理过程及存储过程的管理!(视频序号:进阶_11,12)
知识点五:MySQL存储过程之定义条件和处理过程及存储过程的管理(11,12) 定义条件和处理: 条件的定义和处理可以用来定义在处理过程中遇到的问题时相应的处理步骤. DECLARE CONTINUE ...
- 第四届蓝桥杯C++B组省赛
1.高斯日记 2.马虎的算式 3.第39级台阶 4.黄金连分数 5.前缀判断 6.三部排序 7.错误票据 8.翻硬币 9.带分数 10.连号区间数