Description

在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示。经过艰苦的破译,小可可发现,这些图标表示一个数以及这个数与密码的关系。假设这个数是n,密码为x,那么可以得到如下表述: 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1。 小可可知道满足上述条件的x可能不止一个,所以一定要把所有满足条件的x计算出来,密码肯定就在其中。计算的过程是很艰苦的,你能否编写一个程序来帮助小可可呢?(题中x,n均为正整数)

Input

输入文件只有一行,且只有一个数字n(1<=n<=2,000,000,000)。

Output

你的程序需要找到所有满足前面所描述条件的x,如果不存在这样的x,你的程序只需输出一行“None”(引号不输出),否则请按照从小到大的顺序输出这些x,每行一个数。

Sample Input

12

Sample Output

1

5

7

11


首先还是要推下柿子,首先这题要求\(x^2\equiv 1(\%n)\),所以就有\(x^2-yn=1\),因此有\(yn=(x-1)(x+1)\)

我们令\(y=y_1\times y_2,n=n_1\times n_2\),因此\(y_1\times n_1\times y_2\times n_2=(x-1)(x+1)\),所以我们可以得到\(y_1\times n_1=(x-1),y_2\times n_2=(x+1)\)

所以我们可以直接在\(\sqrt{n}\)的时间内枚举\(n_1,n_2\),我们令\(n_1<n_2\),因此我们可以直接暴力枚举\(y_2\),判断\(y_1\)是否存在

由于不能重复,因此我们可以直接用set存储

/*program from Wolfycz*/
#include<set>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
int n;
set<int>st;
void work(int a,int b){
for (int i=1;1ll*i*b<=n;i++){
if ((i*b+2)%a==0) st.insert((i*b+1)%n);
if ((i*b-2)%a==0) st.insert((i*b-1)%n);
}
}
int main(){
n=read();
for (int i=1;i*i<=n;i++){
if (n%i) continue;
work(i,n/i);
}
for (set<int>::iterator it=st.begin();it!=st.end();it++) printf("%d\n",*it);
}

[AHOI2007]密码箱的更多相关文章

  1. bzoj 1406: [AHOI2007]密码箱 二次剩餘

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] D ...

  2. BZOJ 1406: [AHOI2007]密码箱( 数论 )

    (x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...

  3. 1406: [AHOI2007]密码箱

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1591  Solved: 944[Submit][Status][ ...

  4. BZOJ_1406_[AHOI2007]密码箱_枚举+数学

    BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...

  5. 洛谷——P4296 [AHOI2007]密码箱

    P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...

  6. BZOJ 1406: [AHOI2007]密码箱

    二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...

  7. 【bzoj1406】 AHOI2007密码箱 数论

    在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数 ...

  8. [AHOI2007]密码箱 (数学 + 暴力)

    链接:https://ac.nowcoder.com/acm/problem/19877来源:牛客网 题目描述 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能 ...

  9. 【BZOJ】1406: [AHOI2007]密码箱

    http://www.lydsy.com/JudgeOnline/problem.php?id=1406 题意:求$0<=x<n, 1<=n<=2,000,000,000, 且 ...

随机推荐

  1. httpclient失败重连机制

    HttpClient 底层会默认超时自动重发3次,DefaultHttpRequestRetryHandler源码 /**     * Create the request retry handler ...

  2. CentOS 7下安装Logstash ELK Stack 日志管理系统(下)

    修改防火墙,对外开放tcp/5601 [root@elk elk]# firewall-cmd --permanent --add-port=5601/tcpSuccess[root@elk elk] ...

  3. Swift基础一(代码)

    import Foundation println("Hello, World!") var string1 = "Hello BeiJing" //定义一个变 ...

  4. 深入浅出 - Android系统移植与平台开发(十二)- Android JNI机制

    第五章.JNI机制 4.1 JNI概述 由前面基础知识可知,Android的应用层由Java语言编写,Framework框架层则是由Java代码与C/C++语言实现,之所以由两种不同的语言组合开发框架 ...

  5. Eclipse:Some sites could not be found. See the error log for more detail.解决的方法

    今天遇到了一个奇葩的问题.我把我的sdk tools的版本号升级到23后.我在eclipse中尝试升级ADT,发现了这么一个问题,以下分析下原因: 当我在eclipse中选择Help-->Che ...

  6. Python开发【1.1 基础语法】

    1.Python语言特点 优点: ①.丰富的库 ②.简单.开源 ③.支持面向对象编程 ④.解释性语言,无需编译 ⑤.高层语言,不用考虑内存问题 ⑥.可移植性好,不依赖于操作系统 缺点: ①.运行效率较 ...

  7. iOS 浅谈MVC设计模式及Controllers之间的传值方式

    1.简述你对MVC的理解? MVC是一种架构设计.它考虑了三种对象:Model(模型对象).View(试图对象).Controller(试图控制器) (1)模型:负责存储.定义.操作数据 (2)视图: ...

  8. C项目实践--图书管理系统(4)

    前面已经把图书管理系统的所有功能模块都已实现完毕了,下面通过运行来分析该系统的操作流程并检验是否符合逻辑设计要求. 3.系统操作过程 F5 运行 1.登录系统 系统运行之后,提示输入用户名和密码,系统 ...

  9. linux 监控进程所消耗的资源(内存),达到阈值(绝对值、相对值)后,将其杀死

    监控某个python进程是否存在,如不存在则启动 #!/bin/bashwhile [ 1 ]do #打印出当前的jboss进程:grep jboss查询的jboss进程,grep -v " ...

  10. 【Idea】Debug模式

    Idea则是把手标放到你想显示结果的代码上,按Ctrl+F1就显示结果. 如果你想跳到下一个断点直接按F9