描述

L 饭后无聊,便在 BugTown 里闲荡。

BugTown 共有 N 栋房屋和 M 条有向道路。每栋房屋都有一个非负整数 vi 作为标识。

BugTown 有一个特性十分神奇:从任意一个房屋离开后沿着路走再也不会回到原地。

L 想选一个房屋作为闲荡的起点,之后,他会随机选择一条当前位置能走的道路顺其 走过去,如此反复直到没有能走的道路。

由于极度无聊, L 发明了一个游戏以为消遣。他在闲荡的过程中记录已经过的房屋标 识的异或和(含起点)。闲荡完后,他会得到一个数。

L希望对每个房屋算出以它为起点能得到的数的期望值,但是他不知道怎么算,只好 求助于你。

输入

第一行两个正整数 N; M 分别为房屋数和道路数。

第二行 N 个数为 vi。

接下来 M 行每行两个整数 ai; bi 描述一条 ai 到 bi 的道路

输出

输出共 N 行。第 i 行一个实数表示以 i 号房屋为起点时最后得到的数的期望值。 实数四舍五入到小数点后三位

样例输入

3 2
1 2 3
1 2
2 3

样例输出

0.000
1.000
3.000

对于 10% 的数据, N <= 5; M <= 10。

对于 30% 的数据, N, M<= 50。

对于 70% 的数据, N, M <=1000。

对于 100% 的数据, 1 <= N,M <= 1e5; 0 <= vi <= 1e9。

----------------------------------------------------------------------------------------------

数学期望真是一个大坑!异或的相关计算也是!趁这道题复习了一下这两点。

数学期望:是试验中每次可能结果的概率乘以其结果的总和

·这是公式:

·它有两个结论:

1.E(A + B) = E(A) + E(B)

2.E(k*A) = k*E(A)

看起来没什么用,但实际上太了不起啦(23333

好的然后我们来看这道题。

先从期望入手:

设某个点的标识为k,因为题目涉及到异或,所以有

k的二进制表示:

则:

于是就转化为求E(ai)

而这时候,玄(投机)学(取巧)操作就出现了:因为ai只能为0或1,所以我们可以通过等式拆开化简来消去系数为0的项:

从此,我们将求E(ai)转化为直接求ai=1的概率,即只需要处理每个点出发得到的第i位为1的概率。

接下来我们要构造的是dp转移方程:

用f[c][d]表示从c点出发,此数位为d的概率。

枚举当前到的点u,此时数位为g,v为u的某出边,double p=1.0/出边数,以下分为两种情况:

1. u 没有出边,则有:f[u][g]=1; f[u][g^1]=0;//为g(0,1)的概率为1,为g相反的数(1,0)的概率为0

2. u有出边,则有递推式: f[u][0]+=f[v][g]*p; f[u][1]+=f[v][g^1]*p; //儿子当位为g,异或后为0,反之亦然

最后看回大局,最初应该先做一次拓扑排序,因为我们是以图的一层一层向下转移的。

就酱~

 #include<bits/stdc++.h>
#define N 100010
using namespace std;
int val[N],n,m;
struct rockdu
{
int u,v,nxt;
}e[N*];
int first[N],cnt;
int tot;
void ade(int u,int v)
{
e[++cnt].nxt=first[u];first[u]=cnt;
e[cnt].v=v;e[cnt].u=u;
}
int deg[N],seq[N],sn;
double f[N][];
double ans[N];
queue<int> q;
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&val[i]);
for(int i=;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ade(a,b);
++deg[b];
}
for(int i=;i<=n;i++)
if(deg[i]==) q.push(i);
while(!q.empty())
{
int u=q.front(); q.pop();
seq[++sn]=u;
for(int i=first[u];i;i=e[i].nxt)
{
int v=e[i].v;
deg[v]--;
if(deg[v]==) q.push(v);
}
}
for(int i=;i<;i++)
for(int j=n;j>=;j--)
{
int u=seq[j],son=;
int g=( (val[u]>>i)& );
for(int x=first[u];x;x=e[x].nxt)
++son;//记录儿子个数
if(son==)
{
f[u][g]=1.0;
f[u][g^]=0.0;
}
else
{
double p=1.0/son;
f[u][]=f[u][]=0.0;//初始化
for(int x=first[u];x;x=e[x].nxt)
{
int v=e[x].v;
f[u][]+=f[v][g]*p;
f[u][]+=f[v][g^]*p;
}
}
ans[u]+=f[u][]*(<<i);
}
for(int i=;i<=n;i++)
printf("%.3lf\n",ans[i]);
return ;
}

要看吗ovo

 
 





SDOJ 2605 闲荡的更多相关文章

  1. sdutoj 2605 A^X mod P

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2605 A^X mod P Time Limit ...

  2. sdut 2605 A^X mod P

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2605 这个题卡的是优化,直观解法是在求x^y时 ...

  3. YTU 2605: 熟悉题型——自由设计(比较大小-类模板)

    2605: 熟悉题型--自由设计(比较大小-类模板) 时间限制: 1 Sec  内存限制: 128 MB 提交: 125  解决: 107 题目描述 声明一个类模板,利用它分别实现两个整数.浮点数和字 ...

  4. Power OJ 2605 SPFA+dp思想

    题目链接[https://www.oj.swust.edu.cn/problem/show/2605] 题意:给出包含N(N <= 5000)个点M条边的有向图,然后求1 - N在满足距离小于T ...

  5. ZJU 2605 Under Control

    Under Control Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on ZJU. Original ...

  6. 【洛谷2605】[ZJOI2010] 基站选址(线段树维护DP)

    点此看题面 大致题意: 有\(n\)个村庄,每个村庄有\(4\)个属性:\(D_i\)表示与村庄\(1\)的距离,\(C_i\)表示建立基站的费用,\(S_i\)表示能将其覆盖的建基站范围,\(W_i ...

  7. SDOJ 3742 黑白图

    [描述] 一个 n 个点 m 条边构成的无向带权图.由一些黑点与白点构成 树现在每个白点都要与他距离最近的黑点通过最短路连接(如果有很多个,可以选 取其中任意一个),我们想要使得花费的代价最小.请问这 ...

  8. 【SDOJ 3741】 【poj2528】 Mayor's posters

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  9. SDOJ 3740 Graph

    8.9 t3 [描述] 给你一个图,一共有 N 个点,2*N-2 条有向边. 边目录按两部分给出 1. 开始的 n-1 条边描述了一颗以 1 号点为根的生成树,即每个点都可以由 1 号点 到达. 2. ...

随机推荐

  1. Gradle项目构建(1)——Gradle的由来

    一.项目自动构建介绍 作为Java的开发者对eclipse都非常熟悉,其实eclipse就是居于ant来构建项目的,我们先来看看为什么需要自动化构建项目. 1.为什么我们要自动化构建项目 可以假设我们 ...

  2. uvm_mem——寄存器模型(十二)

    看完了寄存器,再来看看存储器: //------------------------------------------------------------------------------ // ...

  3. Tomcat控制台乱码问题

    乱码效果图 解决办法 1.修改cmd的编码格式 快捷键win+R打开运行程序,输入regedit打开注册表,找到以下路劲并且修改. [HKEY_LOCAL_MACHINE\SOFTWARE\Micro ...

  4. python_104_面向对象总结

    参考(都要认真看看):http://www.cnblogs.com/alex3714/articles/5188179.html http://www.cnblogs.com/alex3714/art ...

  5. Eclipse+Tomcat搭建jsp服务器

    首先,安装java sdk 环境,这里就不多说了,附上java sdk的下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk ...

  6. (转发)IOS高级开发~Runtime(四)

    用C代替OC: #import <objc/runtime.h> #import <objc/message.h> #import <stdio.h> extern ...

  7. 【Machine Learning is Fun!】1.The world’s easiest introduction to Machine Learning

    Bigger update: The content of this article is now available as a full-length video course that walks ...

  8. python源码剖析学习记录-01

    学习<Python源码剖析-深度探索动态语言核心技术>教程         Python总体架构,运行流程   File Group: 1.Core Modules 内部模块,例如:imp ...

  9. Windows7设置局域网文件共享

    首先要实现共享必须设置共享的机器与访问共享的机器在同一个工作组中. 右键桌面上的计算机图标=>属性 如果不一样的话,就需要点击[更改设置] 右键要共享的文件或者文件夹,点击[共享]打开共享标签: ...

  10. centos 安装 python3 分类链接

    上一篇文章描述了如何安装python3,但是在后续安装pip便不断报出缺少各类模块,安装一个又需要依赖另一个,导致安装过程非常繁琐.究其原因,我是安装centos-minimal版本,有许多功能不是完 ...