描述

L 饭后无聊,便在 BugTown 里闲荡。

BugTown 共有 N 栋房屋和 M 条有向道路。每栋房屋都有一个非负整数 vi 作为标识。

BugTown 有一个特性十分神奇:从任意一个房屋离开后沿着路走再也不会回到原地。

L 想选一个房屋作为闲荡的起点,之后,他会随机选择一条当前位置能走的道路顺其 走过去,如此反复直到没有能走的道路。

由于极度无聊, L 发明了一个游戏以为消遣。他在闲荡的过程中记录已经过的房屋标 识的异或和(含起点)。闲荡完后,他会得到一个数。

L希望对每个房屋算出以它为起点能得到的数的期望值,但是他不知道怎么算,只好 求助于你。

输入

第一行两个正整数 N; M 分别为房屋数和道路数。

第二行 N 个数为 vi。

接下来 M 行每行两个整数 ai; bi 描述一条 ai 到 bi 的道路

输出

输出共 N 行。第 i 行一个实数表示以 i 号房屋为起点时最后得到的数的期望值。 实数四舍五入到小数点后三位

样例输入

3 2
1 2 3
1 2
2 3

样例输出

0.000
1.000
3.000

对于 10% 的数据, N <= 5; M <= 10。

对于 30% 的数据, N, M<= 50。

对于 70% 的数据, N, M <=1000。

对于 100% 的数据, 1 <= N,M <= 1e5; 0 <= vi <= 1e9。

----------------------------------------------------------------------------------------------

数学期望真是一个大坑!异或的相关计算也是!趁这道题复习了一下这两点。

数学期望:是试验中每次可能结果的概率乘以其结果的总和

·这是公式:

·它有两个结论:

1.E(A + B) = E(A) + E(B)

2.E(k*A) = k*E(A)

看起来没什么用,但实际上太了不起啦(23333

好的然后我们来看这道题。

先从期望入手:

设某个点的标识为k,因为题目涉及到异或,所以有

k的二进制表示:

则:

于是就转化为求E(ai)

而这时候,玄(投机)学(取巧)操作就出现了:因为ai只能为0或1,所以我们可以通过等式拆开化简来消去系数为0的项:

从此,我们将求E(ai)转化为直接求ai=1的概率,即只需要处理每个点出发得到的第i位为1的概率。

接下来我们要构造的是dp转移方程:

用f[c][d]表示从c点出发,此数位为d的概率。

枚举当前到的点u,此时数位为g,v为u的某出边,double p=1.0/出边数,以下分为两种情况:

1. u 没有出边,则有:f[u][g]=1; f[u][g^1]=0;//为g(0,1)的概率为1,为g相反的数(1,0)的概率为0

2. u有出边,则有递推式: f[u][0]+=f[v][g]*p; f[u][1]+=f[v][g^1]*p; //儿子当位为g,异或后为0,反之亦然

最后看回大局,最初应该先做一次拓扑排序,因为我们是以图的一层一层向下转移的。

就酱~

 #include<bits/stdc++.h>
#define N 100010
using namespace std;
int val[N],n,m;
struct rockdu
{
int u,v,nxt;
}e[N*];
int first[N],cnt;
int tot;
void ade(int u,int v)
{
e[++cnt].nxt=first[u];first[u]=cnt;
e[cnt].v=v;e[cnt].u=u;
}
int deg[N],seq[N],sn;
double f[N][];
double ans[N];
queue<int> q;
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&val[i]);
for(int i=;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ade(a,b);
++deg[b];
}
for(int i=;i<=n;i++)
if(deg[i]==) q.push(i);
while(!q.empty())
{
int u=q.front(); q.pop();
seq[++sn]=u;
for(int i=first[u];i;i=e[i].nxt)
{
int v=e[i].v;
deg[v]--;
if(deg[v]==) q.push(v);
}
}
for(int i=;i<;i++)
for(int j=n;j>=;j--)
{
int u=seq[j],son=;
int g=( (val[u]>>i)& );
for(int x=first[u];x;x=e[x].nxt)
++son;//记录儿子个数
if(son==)
{
f[u][g]=1.0;
f[u][g^]=0.0;
}
else
{
double p=1.0/son;
f[u][]=f[u][]=0.0;//初始化
for(int x=first[u];x;x=e[x].nxt)
{
int v=e[x].v;
f[u][]+=f[v][g]*p;
f[u][]+=f[v][g^]*p;
}
}
ans[u]+=f[u][]*(<<i);
}
for(int i=;i<=n;i++)
printf("%.3lf\n",ans[i]);
return ;
}

要看吗ovo

 
 





SDOJ 2605 闲荡的更多相关文章

  1. sdutoj 2605 A^X mod P

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2605 A^X mod P Time Limit ...

  2. sdut 2605 A^X mod P

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2605 这个题卡的是优化,直观解法是在求x^y时 ...

  3. YTU 2605: 熟悉题型——自由设计(比较大小-类模板)

    2605: 熟悉题型--自由设计(比较大小-类模板) 时间限制: 1 Sec  内存限制: 128 MB 提交: 125  解决: 107 题目描述 声明一个类模板,利用它分别实现两个整数.浮点数和字 ...

  4. Power OJ 2605 SPFA+dp思想

    题目链接[https://www.oj.swust.edu.cn/problem/show/2605] 题意:给出包含N(N <= 5000)个点M条边的有向图,然后求1 - N在满足距离小于T ...

  5. ZJU 2605 Under Control

    Under Control Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on ZJU. Original ...

  6. 【洛谷2605】[ZJOI2010] 基站选址(线段树维护DP)

    点此看题面 大致题意: 有\(n\)个村庄,每个村庄有\(4\)个属性:\(D_i\)表示与村庄\(1\)的距离,\(C_i\)表示建立基站的费用,\(S_i\)表示能将其覆盖的建基站范围,\(W_i ...

  7. SDOJ 3742 黑白图

    [描述] 一个 n 个点 m 条边构成的无向带权图.由一些黑点与白点构成 树现在每个白点都要与他距离最近的黑点通过最短路连接(如果有很多个,可以选 取其中任意一个),我们想要使得花费的代价最小.请问这 ...

  8. 【SDOJ 3741】 【poj2528】 Mayor's posters

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  9. SDOJ 3740 Graph

    8.9 t3 [描述] 给你一个图,一共有 N 个点,2*N-2 条有向边. 边目录按两部分给出 1. 开始的 n-1 条边描述了一颗以 1 号点为根的生成树,即每个点都可以由 1 号点 到达. 2. ...

随机推荐

  1. 如何设置FusionCharts图片导出格式

    通过设置FusionCharts的<chart exportEnabled='1' ...>属性,就可以导出图表,图表的右键菜单将会显示所有可能导出的格式- JPEG, PNG and P ...

  2. Jenkins系列——使用SonarQube进行代码质量检查

    1.目标 之前已经写过一篇关于Jenkins和SonarQube的一篇博客<jenkins集成sonar>,本文在参考前文的基础上,做了详细的补充. 使用SonarQube进行代码质量检查 ...

  3. apache官方供下载所有项目所有版本的官方网站地址

    Apache官网有一个列举apache所有发布的项目的各个版本的官方网站,现在在此记录下来供大家快速浏览使用. 网站地址如下: http://archive.apache.org/dist/

  4. iOS 学习随记 (一)

    入行IT也已经很多年了,厌倦了Windows平台的工作, 4月初突然抽风买了台Mac就开始决定转身做iOS/OS X下的App开发了. 从适应Mac机器到开始编程没有花费太长时间,也因为有C#和Jav ...

  5. userBean之设置属性

    package com.java.model; public class Student { private String name;private int age; public String ge ...

  6. vijos 1320 清点人数

    背景 NK中学组织同学们去五云山寨参加社会实践活动,按惯例要乘坐火车去.由于NK中学的学生很多,在火车开之前必须清点好人数. 描述 初始时,火车上没有学生:当同学们开始上火车时,年级主任从第一节车厢出 ...

  7. MFC:AfxSetResourceHandle

    AfxGetResourceHandle用于获取当前资源模块句柄. 而AfxSetResourceHandle则用于设置程序目前要使用的资源模块句柄,一般在InitInstance()里调用.

  8. Bootstrap历练实例:动画的进度条

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  9. C#数组协方差

    对于任意两个“引用类型”A和B,如果存在从A到B的隐式引用转换或显式引用转换,则也一定存在从数组类型A[R]到数组类型B[R]的相同的引用转换,其中R可以是任何给定的“秩说明符”,但是这两个数组类型必 ...

  10. Java基础面试操作题: 线程问题,写一个死锁(原理:只有互相都等待对方放弃资源才会产生死锁)

    package com.swift; public class DeadLock implements Runnable { private boolean flag; DeadLock(boolea ...