【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述
称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很大,只能输出模P以后的值
输入
输入文件的第一行包含两个整数 n和p,含义如上所述。
输出
输出文件中仅包含一个整数,表示计算1,2,⋯, n的排列中, Mogic排列的个数模 p的值。
样例输入
20 23
样例输出
16
题解
dp+Lucas定理
题目显然小根堆,考虑怎么求以一个节点为根的方案数。根肯定是最小的节点,剩余$n-1$个数选择左子树大小个作为左子树,其余作为右子树。
设$f[i]$表示以i为根的子树形成小根堆的方案数,那么$f[i]=C_{si[i]-1}^{si[i<<1]}*f[i<<1]*f[i<<1|1]$。
注意处理某子树为空的方案数。
另外本题没有保证$n\le p$,故组合数需要使用Lucas定理求出。
#include <cstdio>
#define N 1000010
typedef long long ll;
ll fac[N] , inv[N] , fin[N] , f[N << 1] , si[N << 1];
int p;
ll choose(int n , int m)
{
if(n < m) return 0;
if(n < p && m < p) return fac[n] * fin[m] % p * fin[n - m] % p;
else return choose(n / p , m / p) * choose(n % p , m % p) % p;
}
int main()
{
int n , i;
scanf("%d%d" , &n , &p);
fac[0] = fac[1] = inv[1] = fin[0] = fin[1] = f[0] = 1;
for(i = 2 ; i <= n ; i ++ )
{
fac[i] = fac[i - 1] * i % p;
inv[i] = (p - p / i) * inv[p % i] % p;
fin[i] = fin[i - 1] * inv[i] % p;
}
for(i = n ; i ; i -- )
{
si[i] = si[i << 1] + si[i << 1 | 1] + 1;
f[i] = choose(si[i] - 1 , si[i << 1]) * ((i << 1) > n ? 1 : f[i << 1]) % p * ((i << 1 | 1) > n ? 1 : f[i << 1 | 1]) % p;
}
printf("%lld\n" , f[1]);
return 0;
}
【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理的更多相关文章
- [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)
题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...
- BZOJ2111: [ZJOI2010]Perm 排列计数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...
- [BZOJ2111][ZJOI2010]Perm排列计数(组合数学)
题意就是求一个n个点的堆的合法形态数. 显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的. 设以i为根的堆的形态数为F(i),所以F(i)+= ...
- [bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型
题目大意 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
[BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...
随机推荐
- POJ 1845 Sumdiv (数学,乘法逆元)
题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: ...
- 洛谷 P1433 吃奶酪
题目描述 房间里放着n块奶酪.一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在(0,0)点处. 输入输出格式 输入格式: 第一行一个数n (n<=15) 接下来每行2个实数,表示第i块 ...
- python_88_xml模块
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单例如创建xmltest.xml文件内容如上 注:/代表自结束符号 <?xml version=&quo ...
- fei33423 工作 职场 格言
对老板: 1. 老板不知道你做的事情(目标设定) 2. 老板要的是规划(对上报告), 自己给自己设定 金字塔四位下的目标,各种维度.如何细化. 2.1 明确老板期望 2.2 与老板达成共识 2.3 ...
- iOS小技巧–用runtime 解决UIButton 重复点击问题
什么是这个问题 我们的按钮是点击一次响应一次, 即使频繁的点击也不会出问题, 可是某些场景下还偏偏就是会出问题. 通常是如何解决 我们通常会在按钮点击的时候设置这个按钮不可点击. 等待0.xS的延时后 ...
- 【转】VS2010下MFC的串口编程
串口通信简介 一般来说,计算机都有一个或多个串行端口,这些串口提供了外部设备与PC进行数据传输和通信的通道,在CPU和外设之间充当解释器的角色.当字符数据从CPU发送给外设时,这些字符数据将被转换成串 ...
- 【最大流】bzoj1711: [Usaco2007 Open]Dining吃饭
正在网络流入门(原来这种题用网络流做) Description 农夫JOHN为牛们做了很好的食品,但是牛吃饭很挑食. 每一头牛只喜欢吃一些食品和饮料而别的一概不吃.虽然他不一定能把所有牛喂饱,他还是想 ...
- DNS 工作原理是什么,域名劫持、域名欺骗、域名污染又是什么
DNS 工作原理是什么,域名劫持.域名欺骗.域名污染又是什么 2014年11月27日 10:05:40 阅读数:6726 标签: dns网络互联网顶级域名递归 更多 个人分类: 网络学习 一.DN ...
- Linux菜鸟起飞之路【七】文件合并、归档和压缩
一.文件合并操作 1.覆盖符号与追加符号 a)“>”代表将左边文件的内容覆盖右边文件的内容,如果右边文件不存在则创建这个文件 b)“>>”代表将左边文件的内容追加到右边文件中,如果右 ...
- angular5 HttpInterceptor使用
HttpInterceptor接口是ng的http请求拦截器,当需要拦截http请求,可以实现该接口. 1.创建HttpInterceptor 的实现类,并使用@Injectable()注解 @Inj ...