机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

思路:注意是只有一台机器,所以时间是累加的,那么影响到[j,N]。所以列出方程: f[i]=min():  f[j]+(sum2[N]-sum2[j])*(sum1[i]-sum1[j]+M)

直接dp复杂度是O(N^2),使用效率优化:

//b=y-kx+c; --> f[i]=(-sum1[i]*sum2[j])+(f[j]+sum1[j]*sum2[j]-sum*sum1[j]-M*sum2[j])+(M*sum+sum*sum1[j]);
其中k之和i有关,y之和j有关,b就是f[i],c是常数:k=sum1[i],y=f[j]-sum2[N]*sum1[j]+sum2[j]*sum1[j]-sum2[j]*M;

可以看到我们需要维护一个斜率上升的凸包,由于K=sum1[i]没有说递增,所以我们不能弹出栈顶,求的时候用二分求得凸包极值。

注意:1,二分的时候,二分区间[0,top],0代表的是,从头到尾都选,不能忽略。

     2,每个新的i都要插入,插入当前i时,要维护斜率递增。

 3,维护的图像的x和y分别的 y=kx+b的x和y,所以维护斜率,弹出栈尾比较斜率时,x是sum2[q[top]],而不是q[top];

//b=y-kx+c; --> f[i]=(-sum1[i]*sum2[j])+(f[j]+sum1[j]*sum2[j]-sum*sum1[j]-M*sum2[j])+(M*sum+sum*sum1[j]);
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
ll sum1[maxn],sum2[maxn],f[maxn],M;
int q[maxn],top,N;
ll Y(int j){ return f[j]-sum2[N]*sum1[j]+sum2[j]*sum1[j]-sum2[j]*M; }
ll getans(int i,int j){return f[j]+(sum2[N]-sum2[j])*(sum1[i]-sum1[j]+M);; }
int main()
{
int i; scanf("%d%lld",&N,&M);
for(i=;i<=N;i++){
scanf("%lld%lld",&sum1[i],&sum2[i]);
sum1[i]+=sum1[i-]; sum2[i]+=sum2[i-];
}
for(int i=;i<=N;i++){
int L=,R=top,ans=top;
while(L<=R){
int Mid=(L+R)>>;
if(getans(i,q[Mid])<=getans(i,q[Mid+])) R=Mid-,ans=Mid; else L=Mid+;
}
f[i]=getans(i,q[ans]);
while (top>&& 1ll*(Y(q[top])-Y(q[top-]))*(sum2[i]-sum2[q[top]])>=(Y(i)-Y(q[top]))*(sum2[q[top]]-sum2[q[top-]]))
top--;
q[++top]=i; //while语句里不是dx的时候不是下边之间减,是方程组的sum2来减。
}
printf("%lld\n",f[N]);
return ;
}

BZOJ2726:任务安排(DP+斜率优化+二分)的更多相关文章

  1. BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分

    BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...

  2. P3994 高速公路 树形DP+斜率优化+二分

    $ \color{#0066ff}{ 题目描述 }$ C国拥有一张四通八达的高速公路网树,其中有n个城市,城市之间由一共n-1条高速公路连接.除了首都1号城市,每个城市都有一家本地的客运公司,可以发车 ...

  3. BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)

    题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...

  4. DP斜率优化总结

    目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...

  5. HDU 3507 [Print Article]DP斜率优化

    题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...

  6. 【BZOJ-4518】征途 DP + 斜率优化

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][ ...

  7. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  8. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  9. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

随机推荐

  1. Log4net日志记录、详细配置(自己使用>)

    log4net库是Apache log4j框架在Microsoft.NET平台的实现,是一个帮助程序员将日志信息输出到各种目标(控制台.文件.数据库等)的工具 1.首先添加对log4net.dll的引 ...

  2. Android加载网络图片学习过程

    好多应用,像我们公司的<乘友>还有其他的<飞鸽><陌陌><啪啪>这些,几乎每一款应用都需要加载网络图片,那ToYueXinShangWan,这是比须熟练 ...

  3. 【深入JAVA EE】Spring配置文件解析

    在阅读的过程中有不论什么问题,欢迎一起交流 邮箱:1494713801@qq.com    QQ:1494713801 一.Spring头信息 Spring配置文件的头部信息通常是固定不变的.但每个标 ...

  4. VMware厚置备延迟置零,厚置备置零,精简置备具体解释

    本文具体介绍VMware厚置备延迟置零,厚置备置零,精简置备的概念及选择使用 1.厚置备延迟置零(zeroed thick) 以默认的厚格式创建虚拟磁盘.创建过程中为虚拟磁盘分配所需空间.创建时不会擦 ...

  5. MFC——9.多线程与线程同步

    Lesson9:多线程与线程同步 程序.进程和线程是操作系统的重点,在计算机编程中.多线程技术是提高程序性能的重要手段. 本文主要解说操作系统中程序.进程和线程之间的关系,并通过相互排斥对象和事件对象 ...

  6. 调试Scrapy过程中的心得体会

    1.大量抓取网页时出现“Memory Error”解决办法:设置一个队列,每当爬虫空闲时才向队列中放入请求,例如: from scrapy import signals, Spider from sc ...

  7. Spark源码分析之五:Task调度(一)

    在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的 ...

  8. SVN 等版本管理工具

    程序猿团队开发代码,必须的程序版本管理工具 1.SVN使用教程总结 2.SVN如何切换用户 在使用svn更新或提交数据时需要输入用户名和密码,在输入框中可以选择是否记录,以便下次操作无需再次输入用户名 ...

  9. 玩转 eclipse:[2]代码重构

    Java 程序重构的目标就是进行全系统程序代码变更, 使得工程更符合常用设计思想,它不但不会影响程序的行为 ,反而使程序的结构更为清晰合理. Eclipse 提供一系列非常高效并且有易于重构程序代码的 ...

  10. ubuntu apt 主要命令及参数

    1. apt-cache search package 搜索安装包 2. apt-cache search all 搜索所有安装包 3. apt-cache show package 显示安装包信息 ...