BZOJ2726:任务安排(DP+斜率优化+二分)
Input
Output
Sample Input
Sample Output
153
思路:注意是只有一台机器,所以时间是累加的,那么影响到[j,N]。所以列出方程: f[i]=min(): f[j]+(sum2[N]-sum2[j])*(sum1[i]-sum1[j]+M)
直接dp复杂度是O(N^2),使用效率优化:
//b=y-kx+c; --> f[i]=(-sum1[i]*sum2[j])+(f[j]+sum1[j]*sum2[j]-sum*sum1[j]-M*sum2[j])+(M*sum+sum*sum1[j]);
其中k之和i有关,y之和j有关,b就是f[i],c是常数:k=sum1[i],y=f[j]-sum2[N]*sum1[j]+sum2[j]*sum1[j]-sum2[j]*M;
可以看到我们需要维护一个斜率上升的凸包,由于K=sum1[i]没有说递增,所以我们不能弹出栈顶,求的时候用二分求得凸包极值。
注意:1,二分的时候,二分区间[0,top],0代表的是,从头到尾都选,不能忽略。
2,每个新的i都要插入,插入当前i时,要维护斜率递增。
3,维护的图像的x和y分别的 y=kx+b的x和y,所以维护斜率,弹出栈尾比较斜率时,x是sum2[q[top]],而不是q[top];
//b=y-kx+c; --> f[i]=(-sum1[i]*sum2[j])+(f[j]+sum1[j]*sum2[j]-sum*sum1[j]-M*sum2[j])+(M*sum+sum*sum1[j]);
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
ll sum1[maxn],sum2[maxn],f[maxn],M;
int q[maxn],top,N;
ll Y(int j){ return f[j]-sum2[N]*sum1[j]+sum2[j]*sum1[j]-sum2[j]*M; }
ll getans(int i,int j){return f[j]+(sum2[N]-sum2[j])*(sum1[i]-sum1[j]+M);; }
int main()
{
int i; scanf("%d%lld",&N,&M);
for(i=;i<=N;i++){
scanf("%lld%lld",&sum1[i],&sum2[i]);
sum1[i]+=sum1[i-]; sum2[i]+=sum2[i-];
}
for(int i=;i<=N;i++){
int L=,R=top,ans=top;
while(L<=R){
int Mid=(L+R)>>;
if(getans(i,q[Mid])<=getans(i,q[Mid+])) R=Mid-,ans=Mid; else L=Mid+;
}
f[i]=getans(i,q[ans]);
while (top>&& 1ll*(Y(q[top])-Y(q[top-]))*(sum2[i]-sum2[q[top]])>=(Y(i)-Y(q[top]))*(sum2[q[top]]-sum2[q[top-]]))
top--;
q[++top]=i; //while语句里不是dx的时候不是下边之间减,是方程组的sum2来减。
}
printf("%lld\n",f[N]);
return ;
}
BZOJ2726:任务安排(DP+斜率优化+二分)的更多相关文章
- BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分
BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...
- P3994 高速公路 树形DP+斜率优化+二分
$ \color{#0066ff}{ 题目描述 }$ C国拥有一张四通八达的高速公路网树,其中有n个城市,城市之间由一共n-1条高速公路连接.除了首都1号城市,每个城市都有一家本地的客运公司,可以发车 ...
- BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)
题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
随机推荐
- arcgis水文分析
前言 1.在开始之前首先需要注意几点: 1.arcgis 需要 python2.7 的支持,并有必要的模块库,请一定注意避免与其他软件冲突,例如tecplot 2009 需要python2.5的支持, ...
- wifi认证Portal开发系列(一):Radius与FreeRadius简介
RADIUS 维基百科上的介绍: Remote Authentication Dial-In User Service (RADIUS) is a networking protocol that p ...
- js关于变量作为if条件的真假问题
var a = ""; if(a){ ..... }else{ .....} 以下情况会被认为返回false: "" 空的字符串 为 0 的数字 为 null ...
- Windows系统下正确安装MongoDB
1.下载.安装 官网下载: http://www.mongodb.org/downloads 下载好之后,接下来进行安装了: 2.创建数据文件夹 MongoDB将数据文件夹存储在 db 文件夹下. 可 ...
- 2014新浪研发project师实习笔试(哈尔滨站)
刚经历了新浪笔试,写篇博客记录一下下.方便以后查看. 一.基础题 1.栈和队列的异同点. 2.算法性能的4个评价标准. 排序算法中最稳定的算法. 那几个算法的空间复杂度是O(1)的. 3.线性表,平衡 ...
- 用Delphi实现网络视频编程
在MSN.QQ等聊天类的应用程序中,都应用到了网络视频技术.Delphi使用Object Pascal语言是一种完全面向对象语言,可以开发出灵活强大的程序,开发网络视频程序也不在话下.一个完整的网络视 ...
- maven 配置: 修改默认的 .m2仓库 默认存储路径.
maven 配置: 修改默认的 .m2仓库 默认存储路径. 一 .在系统maven里修改 1.在maven_HOME/conf/下找到配置文档 settings.xml 在文档中添加如下的配置说明 & ...
- 九度OJ 1176:树查找 (完全二叉树)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5209 解决:2193 题目描述: 有一棵树,输出某一深度的所有节点,有则输出这些节点,无则输出EMPTY.该树是完全二叉树. 输入: 输入 ...
- 【题解】Sumdiv
[题解]Sumdiv 传送门 根据组合的乘法原理,一个数的所有约数和 \[ sum=\prod_{i=1} \Sigma_j^{a_i} p_i^j \] 所以任务就变成了分解\(A\)的质因数,分解 ...
- 认识影片版本(CAM、TS、TC、DVD、HD、BD、TVRIP等)
许多朋友在下载电影的时候, 往往会被各种各样的版本标识弄糊涂,今天把各种版本的缩写收集在一起,希望对大家有所帮助 . 引用: 1.CAM(枪版) CAM 通常是用数码摄像机从电影院盗录.有时会使 ...