混合图的欧拉回路定向问题。

顺便瞎说几句,有向图定欧拉回路的充要条件是每个点入度等于出度,并且图联通。无向图的话只要联通无奇点即可。

欧拉路径的确定应该是无向图联通且奇点数0个或2个,有向图忘了,好像复杂一点,这个真考到就暴力瞎搜吧。

既然每个点的度数都定了,又入度等于出度,那两者对半分,在二分图里左向右连上原图的边,左点集与s连容量为待补充的出度,右点集反之。这样如果我真可以定下来的话,就会有左边所有连边都满流。所以跑最大流看能不能到满流(就是差的总出度)即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A<B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A>B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;char c;while(!isdigit(c=getchar()))if(isalpha(c))return x=(int)c;
while(isdigit(c))x=(x<<)+(x<<)+(c^),c=getchar();return x;
}
const int N=+,M=+,INF=0x3f3f3f3f;
int w[M<<],v[M<<],Next[M<<],Head[N<<],cur[N<<],dis[N<<],tot,s,t,n,m;
inline void Addedge(int x,int y,int z){
v[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
v[++tot]=x,Next[tot]=Head[y],Head[y]=tot,w[tot]=;
}
#define y v[j]
inline char bfs(){
queue<int> q;q.push(s),memset(dis,,sizeof dis),dis[s]=;
for(register int i=;i<=(n<<)+;++i)cur[i]=Head[i];
while(!q.empty()){
int x=q.front();q.pop();
for(register int j=Head[x];j;j=Next[j])if(w[j]&&!dis[y]){
dis[y]=dis[x]+,q.push(y);
if(y==t)return ;
}
}
return ;
}
int dinic(int x,int flow){
if(!flow||x==t)return flow;
int rest=flow,k;
for(register int j=cur[x];j&&rest;cur[x]=j,j=Next[j])if(w[j]&&dis[y]==dis[x]+){
if(!(k=dinic(y,_min(rest,w[j]))))dis[y]=;
rest-=k,w[j]-=k,w[j^]+=k;
}
return flow-rest;
}
#undef y
int in[N],out[N],cnt[N];
int x,y,z,T,p,tmp,ans,sigma;
inline void inc(int x,int y){++out[x],++in[y];} int main(){//freopen("tmp.in","r",stdin);freopen("tmp.out","w",stdout);
read(T);while(T--){
read(n),read(m);s=(n<<)+,t=(n<<)+,p=tot=,sigma=ans=;
memset(Head,,sizeof Head),memset(in,,sizeof in),memset(out,,sizeof out),memset(cnt,,sizeof cnt);
for(register int i=;i<=m;++i){
read(x),read(y),read(z);if(x==y)continue;
z?inc(x,y):(Addedge(x,y+n,),Addedge(y,x+n,));++cnt[x],++cnt[y];
}
for(register int i=;i<=n;++i)if(cnt[i]&){
printf("impossible\n");p=;break;
}
else{
tmp=cnt[i]>>;if(tmp<in[i]||tmp<out[i]){printf("impossible\n");p=;break;}
Addedge(s,i,tmp-out[i]),Addedge(i+n,t,tmp-in[i]),sigma+=tmp-out[i];
}
if(p){
while(bfs())ans+=dinic(s,INF);
if(ans==sigma)printf("possible\n");
else printf("impossible\n");
}
}
return ;
}

poj1637 Sightseeing tour[最大流+欧拉回路]的更多相关文章

  1. POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

                                                                Sightseeing tour Time Limit: 1000MS   Me ...

  2. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  3. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  4. poj 1637 Sightseeing tour——最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...

  5. poj 1637 Sightseeing tour —— 最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一 ...

  6. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  7. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  8. poj1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8859   Accepted: 3728 ...

  9. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

随机推荐

  1. Android学习笔记(24):进度条组件ProgressBar及其子类

    ProgressBar作为进度条组件使用,它还派生了SeekBar(拖动条)和RatingBar(星级评分条). ProgressBar支持的XML属性: Attribute Name Related ...

  2. AMD和Intel的CPU对比

    http://www.lotpc.com/yjzs/5825.html 推荐文章:小白看AMD与intel的cpu架构,AMD慢的原因 CPU核心的发展方向是更低的电压.更低的功耗.更先进的制造工艺. ...

  3. Django--网页管理实例解析

    此篇为代码流程的注释以及自己写的小项目的思路: 首先是项目的路由配置: urlpatterns = [ # url(r'^admin/', admin.site.urls), url(r'^yemia ...

  4. HP Vertica Analytics Platform 评測

    1.vertica概念 面向数据分析的数据仓库系统解决方式 2.vertica关键特性 Ø  标准的SQL接口:能够利用已有的BI.ETL.Hadoop/MapReduce和OLTP环境 Ø  高可用 ...

  5. u-boot 学习系列 1 - SPL

    u-boot这个东西从自我N年前使用到现在,变化好多,今天开始重新研究下,本系列的研究都是基于BeagleBoneBlack(bbb)开发板和 u-boot v201801版本的. SPL介绍 在源代 ...

  6. Oracle SQL性能优化 - 根据大表关联更新小表

    需求: 小表数据量20w条左右,大表数据量在4kw条左右,需要根据大表筛选出150w条左右的数据并关联更新小表中5k左右的数据. 性能问题: 对筛选条件中涉及的字段加index后,如下常规的updat ...

  7. The Google File System论文拜读

    The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google∗ 摘要 我们设计并实现了谷歌文件系统 ...

  8. pycharm 5 注册码

    BIG3CLIK6F-eyJsaWNlbnNlSWQiOiJCSUczQ0xJSzZGIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...

  9. Python学习总结之四 -- 这就是Python的字典

    字典原来是这么回事儿 Python学习到现在,我们已经知道,如果想将值分组到结构中,并且通过编号对其进行引用,列表就可以派上用场.不过,今天,我们将学到一种通过名字引用值的数据结构,应该知道这种数据类 ...

  10. Kali安装OCI8 for metasploit Oracle login

    ps:安装了好久,最好才发现很简单,步骤记录下吧 遇到oracle爆破登录的时候OCI8报错,如下图 安装oracle 前面关于oracle client的安装就看官方文档吧 http://dev.m ...