混合图的欧拉回路定向问题。

顺便瞎说几句,有向图定欧拉回路的充要条件是每个点入度等于出度,并且图联通。无向图的话只要联通无奇点即可。

欧拉路径的确定应该是无向图联通且奇点数0个或2个,有向图忘了,好像复杂一点,这个真考到就暴力瞎搜吧。

既然每个点的度数都定了,又入度等于出度,那两者对半分,在二分图里左向右连上原图的边,左点集与s连容量为待补充的出度,右点集反之。这样如果我真可以定下来的话,就会有左边所有连边都满流。所以跑最大流看能不能到满流(就是差的总出度)即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A<B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A>B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;char c;while(!isdigit(c=getchar()))if(isalpha(c))return x=(int)c;
while(isdigit(c))x=(x<<)+(x<<)+(c^),c=getchar();return x;
}
const int N=+,M=+,INF=0x3f3f3f3f;
int w[M<<],v[M<<],Next[M<<],Head[N<<],cur[N<<],dis[N<<],tot,s,t,n,m;
inline void Addedge(int x,int y,int z){
v[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
v[++tot]=x,Next[tot]=Head[y],Head[y]=tot,w[tot]=;
}
#define y v[j]
inline char bfs(){
queue<int> q;q.push(s),memset(dis,,sizeof dis),dis[s]=;
for(register int i=;i<=(n<<)+;++i)cur[i]=Head[i];
while(!q.empty()){
int x=q.front();q.pop();
for(register int j=Head[x];j;j=Next[j])if(w[j]&&!dis[y]){
dis[y]=dis[x]+,q.push(y);
if(y==t)return ;
}
}
return ;
}
int dinic(int x,int flow){
if(!flow||x==t)return flow;
int rest=flow,k;
for(register int j=cur[x];j&&rest;cur[x]=j,j=Next[j])if(w[j]&&dis[y]==dis[x]+){
if(!(k=dinic(y,_min(rest,w[j]))))dis[y]=;
rest-=k,w[j]-=k,w[j^]+=k;
}
return flow-rest;
}
#undef y
int in[N],out[N],cnt[N];
int x,y,z,T,p,tmp,ans,sigma;
inline void inc(int x,int y){++out[x],++in[y];} int main(){//freopen("tmp.in","r",stdin);freopen("tmp.out","w",stdout);
read(T);while(T--){
read(n),read(m);s=(n<<)+,t=(n<<)+,p=tot=,sigma=ans=;
memset(Head,,sizeof Head),memset(in,,sizeof in),memset(out,,sizeof out),memset(cnt,,sizeof cnt);
for(register int i=;i<=m;++i){
read(x),read(y),read(z);if(x==y)continue;
z?inc(x,y):(Addedge(x,y+n,),Addedge(y,x+n,));++cnt[x],++cnt[y];
}
for(register int i=;i<=n;++i)if(cnt[i]&){
printf("impossible\n");p=;break;
}
else{
tmp=cnt[i]>>;if(tmp<in[i]||tmp<out[i]){printf("impossible\n");p=;break;}
Addedge(s,i,tmp-out[i]),Addedge(i+n,t,tmp-in[i]),sigma+=tmp-out[i];
}
if(p){
while(bfs())ans+=dinic(s,INF);
if(ans==sigma)printf("possible\n");
else printf("impossible\n");
}
}
return ;
}

poj1637 Sightseeing tour[最大流+欧拉回路]的更多相关文章

  1. POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

                                                                Sightseeing tour Time Limit: 1000MS   Me ...

  2. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  3. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  4. poj 1637 Sightseeing tour——最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...

  5. poj 1637 Sightseeing tour —— 最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一 ...

  6. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  7. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  8. poj1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8859   Accepted: 3728 ...

  9. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

随机推荐

  1. EAI G4-lidar ROS配置

    (1)使用命令创建 ydlidar_ws 工作空间,并将 G4 资料包内的 ROS 驱动包 ydlidar 下载到ydlidar_ws/src 目录下,切换到 ydlidar_ws 工作空间下并重新进 ...

  2. 基于imgAreaSelect的用户图像截取

    前言:想到用户资料中一般有个图像自我截取的部分,为什么要截取呢,因为好看了.so,经过我各种百度,各种参考,终于打工搞成了,写下纪念纪念,让以后拿来就用也好. 一:想前端ui这东西,我就懒得说话了,哎 ...

  3. Epplus使用技巧

    废话不说,直接开始. 创建Excel工作表 private static ExcelWorksheet CreateSheet(ExcelPackage p, string sheetName)  { ...

  4. 首选项框架PreferenceFragment部分源代码分析

    由于要改一些settings里面的bug以及之前在里面有做过勿扰模式,准备对勿扰模式做一个总结,那先分析一下settings的源代码,里面的核心应该就是android3.0 上面的首选项框架Prefe ...

  5. struts2 jsp提交日期类型转换及国际化实现

    概述:下面通过jsp提交输入注册信息信息,同时完成过程文件国家化问题演示说明.[注册日期转换用注解方式实现] 工程截图: 注册页面jsp文件: <%@ page language="j ...

  6. 微信小程序 原生代码 转wepy 字符串处理

    import globimport os cwd = os.getcwd()sep = os.septarget = cwd + sep + 'pages' + sep + '*' + sep + ' ...

  7. 【模板】P3806点分治1

    [模板]P3806 [模板]点分治1 很好的一道模板题,很无脑经典. 讲讲淀粉质吧,很营养,实际上,点分治是树上的分治算法.根据树的特性,树上两点的路径只有一下两种情况: 路径经过根\((*)\) 路 ...

  8. 我的Android进阶之旅------>Android通过使用Matrix旋转图片来模拟碟片加载过程

    今天实现了一个模拟碟片加载过程的小demo,在此展示一下.由于在公司,不好截取动态图片,因此就在这截取两张静态图片看看效果先. 下面简单的将代码列出来. setp1.准备两张用于旋转的图片,如下:lo ...

  9. Cocos2d-X开发中国象棋《九》走棋规则

    在上一节中实现了走棋,这篇博客将介绍中国象棋中的走棋规则 在写博客前先可能一下象棋的走棋规则: 1)将 将的坐标关系:横坐标相等,纵坐标相减绝对值等于1,或者纵坐标相等,横坐标相减绝对值等于1 将的特 ...

  10. [容易]合并排序数组 II

    题目来源:http://www.lintcode.com/zh-cn/problem/merge-sorted-array/