题解:

第一题:

有一个很明显的性质:后面的修改不会对前面的询问做出影响,CDQ分治套上BIT即可.

第二题:

有一个类似于斜率的形式,分数规划套上树分治,码量稍大,细节稍多.

最后20W的点出题人原本准备是让我们O(n)搞的,点分治+剪枝强行过掉.

第三题:

仙人掌的形式.

但实际上的模型很容易看出来:限制条件多,数据量100+,整体影响明显,最后所求答案明显的单调性,二分+网络流即可.

 (考试的时候,由于状态不好,前两题想-写-调均花了不少时间,最后没时间了.第三题至今没写.)

2017-04-11

cdcqの省选膜你赛 题解的更多相关文章

  1. cdcqの省选膜你赛

    cdcqの省选膜你赛 比赛当天因为在杠hnoi2016的大数据结构没有参加,今天补了一下.挺好玩的虽然不看一句话题意的话真的卡读题 此生无悔入东方,来世愿生幻想乡 2651. 新史「新幻想史 -现代史 ...

  2. Solution -「NOI.AC 省选膜你赛」array

    题目 题意简述   维护一个长度为 \(n\) 的序列 \(\{a_n\}\),并给出 \(q\) 个操作: 将下标为 \(x\) 的数修改为 \(y\). 给定 \(l,r,k\),求最大的 \(m ...

  3. Solution -「NOI.AC 省选膜你赛」寄蒜几盒

    题目 题意简述   给定一个含有 \(n\) 个顶点的凸多边形( \(n\) 是偶数),对于每一对相对的边(即中间有 \(\frac{n}2-1\) 条其它边),延长它们以将平面分割为多块,并把包含原 ...

  4. Solution -「NOI.AC 省选膜你赛」union

    题目 题意简述   给定两颗树 \(A,B\),\(A\) 中的任一结点 \(u\) 与 \(B\) 中的任一结点 \(v\) 都有一个关系值 \(f(u,v)\),初始为 \(0\).再给出 \(q ...

  5. Solution -「NOI.AC 省选膜你赛」T2

      这道题就叫 T2 我有什么办法www 题目 题意简述   给定一个字符串 \(s\),其长度为 \(n\),求无序子串对 \((u,v)\) 的个数,其中 \((u,v)\) 满足 \(u,v\) ...

  6. Comet OJ 2019 夏季欢乐赛题解

    Comet OJ 2019 夏季欢乐赛题解 我是来骗访问量的 A 完全k叉树 \(n\)个点的完全k叉树的直径. 直接做 B 距离产生美 直接做 C 烤面包片 \(n!!!\mod p\) 显然\(n ...

  7. 第六届蓝桥杯软件类省赛题解C++/Java

    第六届蓝桥杯软件类省赛题解C++/Java 1[C++].统计不含4的数字统计10000至99999中,不包含4的数值个数.答:暴力循环范围内所有数字判断一下就是了,答案是52488 1[Java]. ...

  8. luoguP1036 选数 暴力AC题解

    luoguP1036 选数 暴力AC题解(非正解) 俗话说得好:暴力出奇迹,打表拿省一. 对于一些暴力就能拿分的题,暴力就好啦QWQ 题目描述   输入格式 输出格式 输入输出样例 定义变量 我们令输 ...

  9. 淘淘蓝蓝的CSP-S神妙膜你赛2-淘淘蓝蓝喜欢01串 题解

    问题简述 给定\(n\)个盒子,每个盒子的容器为\(b[i]\),里面装有\(a[i]\)个物品.今有\(q\)组询问,每组询问给出一个正整数\(k(k<=n)\),已知一个盒子里的一件物品转移 ...

随机推荐

  1. JAVA使用外部字体将文字生成图片,并使用FontMetrics居中文字

    需求: 1.用户输入文字,根据外部字体,将文字生成图片 2.输出的文字需要居中在图片中显示 遇到的问题: 1.如何导入外部字体?使用Java的Font类,所有的字体都是系统安装过的 2.每次用户输入的 ...

  2. 2017.2.9 开涛shiro教程-第十章-会话管理(一)

    原博客地址:http://jinnianshilongnian.iteye.com/blog/2018398 根据下载的pdf学习. 第十章 会话管理(一) 10.1 会话 shiro提供的会话可以用 ...

  3. Octave入门基础

    Octave入门基础 一.简单介绍 1.1 Octave是什么? Octave是一款用于数值计算和画图的开源软件.和Matlab一样,Octave 尤其精于矩阵运算:求解联立方程组.计算矩阵特征值和特 ...

  4. Android Touch事件传递机制具体解释 下

    尊重原创:http://blog.csdn.net/yuanzeyao/article/details/38025165 资源下载:http://download.csdn.net/detail/yu ...

  5. innodb之change buffer被动merge

    被动merge情景一.二级索引页空间不足:ibuf0ibuf.cc:: ibuf_insert_low 1.当尝试缓存插入操作时,假设预估二级索引page的空间不足.可能导致索引分裂,则定位到尝试缓存 ...

  6. UDP最大传输字节

    每个包最大可携带字节长度:65507个byte. 封装成 IP 后,大小超出 PMTU 的分组将可能被 fragmented. 如果设置了 Don't Frag,超出 PMTU 的分组将不能被发送. ...

  7. ui-router $transitions 用法

    1. //route redirection $transitions.onStart({to: 'manage'}, function (trans) { var params = trans.pa ...

  8. 小明同学喜欢体育锻炼,他常常去操场上跑步。跑道是一个圆形,在本题中,我们认为跑道是一个半径为R的圆形,设圆心的坐标原点(0,0)。小明跑步的起点坐标为(R,0),他沿着圆形跑道跑步,而且一直沿着一个方向跑步。回到家后,他查看了自己的计步器,计步器显示他跑步的总路程为L。小明想知道自己结束跑步时的坐标,但是他忘记自己是沿着顺时针方向还是逆时针方向跑的了。他想知道在这两种情况下的答案分别是多少。

    include "stdafx.h" #include<iostream> #include<vector> #include<string> ...

  9. 01 http协议概念及工作流程

    一:HTTP协议 重要性: 无论是以后用webserverice ,还是用rest做大型架构,都离不开对HTTP协议的认识. 甚至可以简化的说: webservice = http协议+XML Res ...

  10. matlab biplot 符号的困惑

    在matlab中做Principal component Analysis 时,常要用biplot 函数来画图,表示原分量与主分量(principal component)之间的关系,以及原始观察数据 ...