tensorflow knn 预测房价 注意有 Min-Max Scaling
示例数据:
0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00
0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60
0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70
0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622 3 222.0 18.70 394.63 2.94 33.40
0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622 3 222.0 18.70 396.90 5.33 36.20
0.02985 0.00 2.180 0 0.4580 6.4300 58.70 6.0622 3 222.0 18.70 394.12 5.21 28.70
0.08829 12.50 7.870 0 0.5240 6.0120 66.60 5.5605 5 311.0 15.20 395.60 12.43 22.90
0.14455 12.50 7.870 0 0.5240 6.1720 96.10 5.9505 5 311.0 15.20 396.90 19.15 27.10
0.21124 12.50 7.870 0 0.5240 5.6310 100.00 6.0821 5 311.0 15.20 386.63 29.93 16.50
0.17004 12.50 7.870 0 0.5240 6.0040 85.90 6.5921 5 311.0 15.20 386.71 17.10 18.90
0.22489 12.50 7.870 0 0.5240 6.3770 94.30 6.3467 5 311.0 15.20 392.52 20.45 15.00
0.11747 12.50 7.870 0 0.5240 6.0090 82.90 6.2267 5 311.0 15.20 396.90 13.27 18.90
0.09378 12.50 7.870 0 0.5240 5.8890 39.00 5.4509 5 311.0 15.20 390.50 15.71 21.70
0.62976 0.00 8.140 0 0.5380 5.9490 61.80 4.7075 4 307.0 21.00 396.90 8.26 20.40
0.63796 0.00 8.140 0 0.5380 6.0960 84.50 4.4619 4 307.0 21.00 380.02 10.26 18.20
0.62739 0.00 8.140 0 0.5380 5.8340 56.50 4.4986 4 307.0 21.00 395.62 8.47 19.90
1.05393 0.00 8.140 0 0.5380 5.9350 29.30 4.4986 4 307.0 21.00 386.85 6.58 23.10
代码:最大值与最小值之差:ptp()
# k-Nearest Neighbor
#----------------------------------
#
# This function illustrates how to use
# k-nearest neighbors in tensorflow
#
# We will use the 1970s Boston housing dataset
# which is available through the UCI
# ML data repository.
#
# Data:
#----------x-values-----------
# CRIM : per capita crime rate by town
# ZN : prop. of res. land zones
# INDUS : prop. of non-retail business acres
# CHAS : Charles river dummy variable
# NOX : nitrix oxides concentration / 10 M
# RM : Avg. # of rooms per building
# AGE : prop. of buildings built prior to 1940
# DIS : Weighted distances to employment centers
# RAD : Index of radian highway access
# TAX : Full tax rate value per $10k
# PTRATIO: Pupil/Teacher ratio by town
# B : 1000*(Bk-0.63)^2, Bk=prop. of blacks
# LSTAT : % lower status of pop
#------------y-value-----------
# MEDV : Median Value of homes in $1,000's import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
from tensorflow.python.framework import ops
ops.reset_default_graph() # Create graph
sess = tf.Session() # Load the data
housing_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'
housing_header = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
cols_used = ['CRIM', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX', 'PTRATIO', 'B', 'LSTAT']
num_features = len(cols_used)
housing_file = requests.get(housing_url)
housing_data = [[float(x) for x in y.split(' ') if len(x)>=1] for y in housing_file.text.split('\n') if len(y)>=1] y_vals = np.transpose([np.array([y[13] for y in housing_data])])
x_vals = np.array([[x for i,x in enumerate(y) if housing_header[i] in cols_used] for y in housing_data]) ## Min-Max Scaling
x_vals = (x_vals - x_vals.min(0)) / x_vals.ptp(0) # Split the data into train and test sets
np.random.seed(13) #make results reproducible
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices] # Declare k-value and batch size
k = 4
batch_size=len(x_vals_test) # Placeholders
x_data_train = tf.placeholder(shape=[None, num_features], dtype=tf.float32)
x_data_test = tf.placeholder(shape=[None, num_features], dtype=tf.float32)
y_target_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target_test = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Declare distance metric
# L1
distance = tf.reduce_sum(tf.abs(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), axis=2) # L2
#distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), reduction_indices=1)) # Predict: Get min distance index (Nearest neighbor)
#prediction = tf.arg_min(distance, 0)
top_k_xvals, top_k_indices = tf.nn.top_k(tf.negative(distance), k=k)
x_sums = tf.expand_dims(tf.reduce_sum(top_k_xvals, 1),1)
x_sums_repeated = tf.matmul(x_sums,tf.ones([1, k], tf.float32))
x_val_weights = tf.expand_dims(tf.div(top_k_xvals,x_sums_repeated), 1) top_k_yvals = tf.gather(y_target_train, top_k_indices)
prediction = tf.squeeze(tf.matmul(x_val_weights,top_k_yvals), axis=[1]) # Calculate MSE
mse = tf.div(tf.reduce_sum(tf.square(tf.subtract(prediction, y_target_test))), batch_size) # Calculate how many loops over training data
num_loops = int(np.ceil(len(x_vals_test)/batch_size)) for i in range(num_loops):
min_index = i*batch_size
max_index = min((i+1)*batch_size,len(x_vals_train))
x_batch = x_vals_test[min_index:max_index]
y_batch = y_vals_test[min_index:max_index]
predictions = sess.run(prediction, feed_dict={x_data_train: x_vals_train, x_data_test: x_batch,
y_target_train: y_vals_train, y_target_test: y_batch})
batch_mse = sess.run(mse, feed_dict={x_data_train: x_vals_train, x_data_test: x_batch,
y_target_train: y_vals_train, y_target_test: y_batch}) print('Batch #' + str(i+1) + ' MSE: ' + str(np.round(batch_mse,3))) # Plot prediction and actual distribution
bins = np.linspace(5, 50, 45) plt.hist(predictions, bins, alpha=0.5, label='Prediction')
plt.hist(y_batch, bins, alpha=0.5, label='Actual')
plt.title('Histogram of Predicted and Actual Values')
plt.xlabel('Med Home Value in $1,000s')
plt.ylabel('Frequency')
plt.legend(loc='upper right')
plt.show()

tensorflow knn 预测房价 注意有 Min-Max Scaling的更多相关文章
- Tensorflow 线性回归预测房价实例
在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...
- 在一定[min,max]区间,生成n个不重复的随机数的封装函数
引:生成一个[min,max]区间的一个随机数,随机数生成相关问题参考→链接 var ran=parseInt(Math.random()*(max-min+1)+min); //生成一个[min,m ...
- LINQ to SQL Count/Sum/Min/Max/Avg Join
public class Linq { MXSICEDataContext Db = new MXSICEDataContext(); // LINQ to SQL // Count/Sum/Min/ ...
- 2.10 用最少次数寻找数组中的最大值和最小值[find min max of array]
[本文链接] http://www.cnblogs.com/hellogiser/p/find-min-max-of-array.html [题目] 对于一个由N个整数组成的数组,需要比较多少次才能把 ...
- LINQ Count/Sum/Min/Max/Avg
参考:http://www.cnblogs.com/peida/archive/2008/08/11/1263384.html Count/Sum/Min/Max/Avg用于统计数据,比如统计一些数据 ...
- 【转载】:【C++跨平台系列】解决STL的max()与numeric_limits::max()和VC6 min/max 宏冲突问题
http://www.cnblogs.com/cvbnm/articles/1947743.html 多年以前,Microsoft 幹了一件比 #define N 3 還要蠢的蠢事,那就是在 < ...
- LINQ to SQL 语句(3) 之 Count/Sum/Min/Max/Avg
LINQ to SQL 语句(3) 之 Count/Sum/Min/Max/Avg [1] Count/Sum 讲解 [2] Min 讲解 [3] Max 讲解 [4] Average 和 Agg ...
- [转]LINQ语句之Select/Distinct和Count/Sum/Min/Max/Avg
在讲述了LINQ,顺便说了一下Where操作,这篇开始我们继续说LINQ语句,目的让大家从语句的角度了解LINQ,LINQ包括LINQ to Objects.LINQ to DataSets.LINQ ...
- 动态规划——min/max的单调性优化总结
一般形式: $max\{min(ax+by+c,dF(x)+eG(y)+f)\},其中F(x)和G(y)是单调函数.$ 或 $min\{max(ax+by+c,dF(x)+eG(y)+f)\},其中F ...
随机推荐
- Vue2.0 :key作用
转自:https://www.cnblogs.com/zhumingzhenhao/p/7688336.html 为了给 Vue 一个提示,以便它能跟踪每个节点的身份,从而重用和重新排序现有元素,你需 ...
- apue学习笔记(第四章 文件和目录)
本章将描述文件系统的其他特性和文件的性质. 函数stat.fstat.fstatat和lstat #include <sys/stat.h> int stat(const char *re ...
- VueJS构造器:new Vue({})
构造器 每个 Vue.js 应用都是通过构造函数 Vue 创建一个 Vue 的根实例来启动的: var vm = new Vue({ // 选项 }) 属性与方法 每个 Vue 实例都会代理其 dat ...
- Robot framework 引入 Selenium2Library 类库:
在用robotframework-selenium2library做web自动化测试时候,首先要将Selenium2Library导入到Test Suite中,在导入Selenium2Library时 ...
- CSU - 1556 Jerry's trouble(高速幂取模)
[题目链接]:click here [题目大意]:计算x1^m+x2^m+..xn^m(1<=x1<=n)( 1 <= n < 1 000 000, 1 <= m < ...
- Bootstrap学习速查表(三) 表单
表单中常见的元素主要包括:文本输入框.下拉选择框.单选按钮.复选按钮.文本域和按钮等. 一.基础表单 1.初始化:对于基础表单,Bootstrap并未对其做太多的定制性效果设计,仅仅对表单内的fiel ...
- H5网页判断手机横屏或是竖屏
我们做出来的H5页面在手机端浏览的时候,用户很有可能会产生更换横竖屏的操作,这时如果我们能够判断出横竖屏,就可以更好的优化我们的网页,进而拥有更好的用户体验度.下面是判断横竖屏的代码: window. ...
- c# emit 动态实现接口
using System; using System.Linq; using System.Reflection; using System.Reflection.Emit; namespace Te ...
- SQL Server外连接、内连接、交叉连接
小编在做组织部维护最后收尾工作的时候,遇到了这样一个问题,须要将定性考核得分查出来.定量考核相应的数据查出来并进行得分计算.附加分查出来,最后将这三部分信息汇总之后得到总成绩,假设当中一项成绩没有进行 ...
- phpstudy nginx下curl请求本地其他项目
curl 请求的时候 如果用post请求,传递参数为 数组的时候 header 头 会被设置为 multipart/form-data 如果是字符串 形式 header 头会被设置为applica ...