等差数列划分

如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列。

例如,以下数列为等差数列:

1, 3, 5, 7, 9

7, 7, 7, 7

3, -1, -5, -9

以下数列不是等差数列。

1, 1, 2, 5, 7

数组 A 包含 N 个数,且索引从0开始。数组 A 的一个子数组划分为数组 (P, Q),P 与 Q 是整数且满足 0<=P<Q<N 。

如果满足以下条件,则称子数组(P, Q)为等差数组:

元素 A[P], A[p + 1], ..., A[Q - 1], A[Q] 是等差的。并且 P + 1 < Q 。

函数要返回数组 A 中所有为等差数组的子数组个数。

示例:

A = [1, 2, 3, 4]

返回: 3, A 中有三个子等差数组: [1, 2, 3], [2, 3, 4] 以及自身 [1, 2, 3, 4]。

dp[i] 表示以 A[i] 为结尾的等差递增子区间的个数。

如果 A[i] - A[i - 1] == A[i - 1] - A[i - 2],表示 [A[i - 2], A[i - 1], A[i]] 是一个等差递增子区间。如果 [A[i - 3], A[i - 2], A[i - 1]] 是一个等差递增子区间,那么 [A[i - 3], A[i - 2], A[i - 1], A[i]] 也是。因此在这个条件下,dp[i] = dp[i-1] + 1。

 class Solution {
public int numberOfArithmeticSlices(int[] A) {
if(A==null||A.length==0) return 0;
int n=A.length;
int[] dp=new int[n];
for(int i=2;i<n;i++){
if(A[i]-A[i-1]==A[i-1]-A[i-2]){
dp[i]=dp[i-1]+1;
}
}
int total=0;
for(int c:dp){
total+=c;
}
return total;
}
}

Leetcode 413.等差数列划分的更多相关文章

  1. Java实现 LeetCode 413 等差数列划分

    413. 等差数列划分 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, - ...

  2. Leetcode——413. 等差数列划分

    题目描绘:题目链接 题目中需要求解一个数组中等差数组的个数,这个问题可以利用动态规划的思路来分析. 三步骤: 1:问题归纳.题目需要求解等差数列的和,我们可以用一个数组保存前i个元素可以构成的等差数列 ...

  3. Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices)

    Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices) 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为 ...

  4. Leetcode 446.等差数列划分II 子序列

    等差数列划分II 子序列 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, ...

  5. Java实现 LeetCode 446 等差数列划分 II - 子序列

    446. 等差数列划分 II - 子序列 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 ...

  6. LeetCode 413 Arithmetic Slices详解

    这个开始自己做的动态规划复杂度达到了O(n), 是用的是2维的矩阵来存前面的数据,复杂度太高了, 虽然好理解,但是没效率,后面看这个博客发现没有动态规划做了这个题 也是比较厉害. 转载地址: http ...

  7. Leetcode 413. Arithmetic Slice 算术序列切片(动态规划,暴力)

    Leetcode 413. Arithmetic Slice 算术序列切片(动态规划,暴力) 题目描述 如果一个数组1.至少三个元素2.两两之间差值相同,那么这个数组就是算术序列 比如下面的数组都是算 ...

  8. 【LeetCode】413. Arithmetic Slices 等差数列划分

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力 双指针 递归 动态规划 日期 题目地址:htt ...

  9. 413 Arithmetic Slices 等差数列划分

    如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列.例如,以下数列为等差数列:1, 3, 5, 7, 97, 7, 7, 73, -1, -5, -9以下数列不是等差数列. ...

随机推荐

  1. 代码中看见一共8个变量参数{SEO,0,0,0,0,0,0,0} 解读!{Top,0,0,0,0,0,0,Top}{Nav,0,0,0,0,0,0,Nav}

    代码中看见{SEO,0,0,0,0,0,0,0}{Top,0,0,0,0,0,0,Top}{Nav,0,0,0,0,0,0,Nav}解读! 举个例子: {GetNew,977,0,23,500,0,0 ...

  2. chrome浏览器好用的一些插件

    1. Listen 1(听音乐) 2. The Great Suspender(定时释放chrome 打开的页面内存) 3. Similar Web(页面流量分析) 4. Advertising Te ...

  3. 杂谈 什么是伪共享(false sharing)?

    问题 (1)什么是 CPU 缓存行? (2)什么是内存屏障? (3)什么是伪共享? (4)如何避免伪共享? CPU缓存架构 CPU 是计算机的心脏,所有运算和程序最终都要由它来执行. 主内存(RAM) ...

  4. 状态模式和php实现

    状态模式: 允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎修改了它的类.其别名为状态对象(Objects for States),状态模式是一种对象行为型模式. 模式分析: 在很多情况下, ...

  5. functools模块中的函数

    Python自带的functools模块提供了一些常用的高阶函数,也就是用于处理其它函数的特殊函数.换言之,就是能使用该模块对可调用对象进行处理.functools模块函数概览functools.cm ...

  6. UVA 11400 Lighting System Design 照明系统设计

    首先是一个贪心,一种灯泡要么全都换,要么全都不换. 先排序,定义状态d[i]为前面i种灯泡的最小花费,状态转移就是从d[j],j<i,加上 i前面的j+1到i-1种灯泡换成i的花费. 下标排序玩 ...

  7. NYOJ-1057-寻找最大数(三)

    http://acm.nyist.net/JudgeOnline/problem.php?pid=1057 寻找最大数(三) 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描 ...

  8. 后台返回平铺数据,如何转换成树形json并渲染树形结构,ant tree 异步加载

    如何后台返回对象数组(平铺式) 1.根据字段标识(板块)获取根节点 ### initTreeData(dataOrg){ var resultArr=dataOrg[0] var secArr=[]; ...

  9. w3 parse a url

     最新链接:https://www.w3.org/TR/html53/ 2.6 URLs — HTML5 li, dd li { margin: 1em 0; } dt, dfn { font-wei ...

  10. <MySQL>入门一 查询 DQL

    1. 数据库表 1.1 员工表 Create Table CREATE TABLE `employees` ( `employee_id` ) NOT NULL AUTO_INCREMENT, `fi ...