POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 10306 | Accepted: 3519 |
Description
Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.
Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.
While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.
The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.
In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.
Help the cows find the maximum fun value per unit time that they can achieve.
Input
* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti
Output
* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.
Sample Input
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
Sample Output
6.00
题目链接:POJ 3621
最优比例环的题,也是用01分数规划写,目的是找到一个环,使得该环上${\Sigma w_v \over \Sigma w_e}$最大,那么我们设比例为r,当${\Sigma w_v \over \Sigma w_e}>r$时说明可以找到更大的r'作为答案,由这个式子有可以得到:$\Sigma w_v - r * \Sigma w_e>0$,即存在左边的式子结果>0即可,若要找存在一个数大于0,那么肯定找这个数可能的最大值,那显然把边权重新赋值为$w_{vi}-r*w_{e}$,然后这式子跟SPFA找正环有什么关系?可以发现$\Sigma w_v - r * \Sigma w_e$这个式子代表了这个环上用$w_{vi}-r*w_{ei}$作为新边权的所有边权之和,如果这个和大于0,那显然这个环上存在正环,即有不存在最长路,那每一次SPFA找最长路看看是否存在即可,当然也把式子加个负号,然后用负环检测也可以做
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = 5010;
const double eps = 1e-6;
struct edge
{
int to, nxt;
double w;
edge() {}
edge(int _to, int _nxt, double _w): to(_to), nxt(_nxt), w(_w) {}
};
edge E[M];
int head[N], tot;
int vis[N], cnt[N];
double d[N];
int arr[N]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, double w)
{
E[tot] = edge(t, head[s], w);
head[s] = tot++;
}
int spfa(int n, double g)
{
queue<int>Q;
for (int i = 1; i <= n; ++i)
{
d[i] = 0;
vis[i] = 1;
cnt[i] = 1;
Q.push(i);
}
while (!Q.empty())//找正环
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
double w = arr[u] - g * E[i].w;
if (d[v] < d[u] + w)
{
d[v] = d[u] + w;
if (!vis[v])
{
vis[v] = 1;
Q.push(v);
if (++cnt[v] > n)
return 1;
}
}
}
}
return 0;
}
int main(void)
{
int n, m, a, b, i;
double w;
while (~scanf("%d%d", &n, &m))
{
init();
for (i = 1; i <= n; ++i)
scanf("%d", &arr[i]);
for (i = 1; i <= m; ++i)
{
scanf("%d%d%lf", &a, &b, &w);
add(a, b, w);
}
double L = 0, R = 1000;
double ans = 0;
while (fabs(R - L) >= eps)
{
double mid = (L + R) / 2.0;
if (spfa(n, mid))
{
L = mid;
ans = mid;
}
else
R = mid;
}
printf("%.2f\n", ans);
}
return 0;
}
POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)的更多相关文章
- POJ 3621 Sightseeing Cows [最优比率环]
感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ3621 Sightseeing Cows 最优比率环 二分法
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题
http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...
- [POJ 3621] Sightseeing Cows
[题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...
- POJ 3621 Sightseeing Cows (最优比率环 01分数划分)
题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...
- POJ3621 Sightseeing Cows(最优比率环)
题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...
- POJ 3621 Sightseeing Cows | 01分数规划
题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...
- POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)
题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大. 析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0 ...
随机推荐
- Jmeter后置处理器
一.什么是关联? 将请求1的输出 作为 请求2 的输入,则称之为关联 例如:“用户登录”请求中服务器返回了token,“查询用户信息”请求需要把token返回给服务器进行验证 二.通过JSON Pat ...
- 数组 -----JavaScript
本文摘要:http://www.liaoxuefeng.com/ JavaScript的Array可以包含任意数据类型,并通过索引来访问每个元素.(数据里面可以有多个不同类型的元素组成) 要取得Arr ...
- WinSCP使用与linux命令(小部分命令)
一.下载一个WinSCP WinSCP是一个Windows环境下使用SSH的开源图形化SFTP客户端.同时支持SCP协议.它的主要功能就是在本地与远程计算机间安全的复制文件..winscp也可以链接其 ...
- maven手动导入jar包到本地仓库
一.cmd进入maven的bin目录下(我的目录是E:\cloud_cms\apache-maven-3.5.4\bin) cd E:\cloud_cms\apache-maven-3.5.4\bin ...
- 解决使用Application Loader上传ipa提示“上传appstore失败”
试了好多次使用Application Loader上传ipa,一直提示上传失败,用其他mac电脑却可以,那就是环境有问题,笔者试过重装xcode,都无法解决问题, 查看日志类似是jdk版本问题,换了所 ...
- 微信小程序页面跳转绑定点击事件
https://www.cnblogs.com/mrszhou/p/7931747.html
- python 用requests请求,报SSL:CERTIFICATE_VERIFY_FAILED错误
https://www.aliyun.com/jiaocheng/437481.html
- API Star:一个 Python 3 的 API 框架
为了在 Python 中快速构建 API,我主要依赖于 Flask.最近我遇到了一个名为 "API Star" 的基于 Python 3 的新 API 框架.由于几个原因,我对它很 ...
- cmf5分页相关
//分页配置在app/config.php 'paginate' => [ 'type' => '\cmf\paginator\Bootstrap', 'var_page' => ' ...
- 43.VUE学习之--组件之使用.sync修饰符与computed计算属性超简单的实现美团购物车原理
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...