POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10306 | Accepted: 3519 |
Description
Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.
Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.
While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.
The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.
In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.
Help the cows find the maximum fun value per unit time that they can achieve.
Input
* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti
Output
* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.
Sample Input
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
Sample Output
6.00
题目链接:POJ 3621
最优比例环的题,也是用01分数规划写,目的是找到一个环,使得该环上${\Sigma w_v \over \Sigma w_e}$最大,那么我们设比例为r,当${\Sigma w_v \over \Sigma w_e}>r$时说明可以找到更大的r'作为答案,由这个式子有可以得到:$\Sigma w_v - r * \Sigma w_e>0$,即存在左边的式子结果>0即可,若要找存在一个数大于0,那么肯定找这个数可能的最大值,那显然把边权重新赋值为$w_{vi}-r*w_{e}$,然后这式子跟SPFA找正环有什么关系?可以发现$\Sigma w_v - r * \Sigma w_e$这个式子代表了这个环上用$w_{vi}-r*w_{ei}$作为新边权的所有边权之和,如果这个和大于0,那显然这个环上存在正环,即有不存在最长路,那每一次SPFA找最长路看看是否存在即可,当然也把式子加个负号,然后用负环检测也可以做
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = 5010;
const double eps = 1e-6;
struct edge
{
int to, nxt;
double w;
edge() {}
edge(int _to, int _nxt, double _w): to(_to), nxt(_nxt), w(_w) {}
};
edge E[M];
int head[N], tot;
int vis[N], cnt[N];
double d[N];
int arr[N]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, double w)
{
E[tot] = edge(t, head[s], w);
head[s] = tot++;
}
int spfa(int n, double g)
{
queue<int>Q;
for (int i = 1; i <= n; ++i)
{
d[i] = 0;
vis[i] = 1;
cnt[i] = 1;
Q.push(i);
}
while (!Q.empty())//找正环
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
double w = arr[u] - g * E[i].w;
if (d[v] < d[u] + w)
{
d[v] = d[u] + w;
if (!vis[v])
{
vis[v] = 1;
Q.push(v);
if (++cnt[v] > n)
return 1;
}
}
}
}
return 0;
}
int main(void)
{
int n, m, a, b, i;
double w;
while (~scanf("%d%d", &n, &m))
{
init();
for (i = 1; i <= n; ++i)
scanf("%d", &arr[i]);
for (i = 1; i <= m; ++i)
{
scanf("%d%d%lf", &a, &b, &w);
add(a, b, w);
}
double L = 0, R = 1000;
double ans = 0;
while (fabs(R - L) >= eps)
{
double mid = (L + R) / 2.0;
if (spfa(n, mid))
{
L = mid;
ans = mid;
}
else
R = mid;
}
printf("%.2f\n", ans);
}
return 0;
}
POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)的更多相关文章
- POJ 3621 Sightseeing Cows [最优比率环]
感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ3621 Sightseeing Cows 最优比率环 二分法
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题
http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...
- [POJ 3621] Sightseeing Cows
[题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...
- POJ 3621 Sightseeing Cows (最优比率环 01分数划分)
题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...
- POJ3621 Sightseeing Cows(最优比率环)
题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...
- POJ 3621 Sightseeing Cows | 01分数规划
题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...
- POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)
题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大. 析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0 ...
随机推荐
- python 基础之列表切片内置方法
列表操作 c=['cx','zrd','ajt','dne'] #定义一个列表,有4个元素 #增删改查 print(c[3]) #从0计数 测试 D:\python\python.exe D:/unt ...
- Restful API 的设计规范
RESTful 是目前最流行的 API 设计规范,用于 Web 数据接口的设计.降低开发的复杂性,提高系统的可伸缩性. Restful API接口规范包括以下部分: 一.协议 API与用户的通信协议, ...
- PAT (Basic Level) Practise (中文)- 1006. 换个格式输出整数 (15)
http://www.patest.cn/contests/pat-b-practise/1006 让我们用字母B来表示“百”.字母S表示“十”,用“12...n”来表示个位数字n(<10),换 ...
- java基础编程——重建二叉树
题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...
- 关于后台获取不到HiddenField值的有关问题
服务器加载aspx程序时,首先要执行后台cs文件中的page_load等方法中的代码,其它按钮事件等是不执行的,生成页面发送到客户端.客户端执行时会响应js脚本,提交到服务器后除了执行page_loa ...
- C#进阶之全面解析Lambda表达式
引言 在实际的项目中遇到一个问题,我们经常在网上搜索复制粘贴,其中有些代码看着非常的简洁,比如Lambda表达式,但是一直没有去深入了解它的由来,以及具体的使用方法,所以在使用的时候比较模糊,其次,编 ...
- Mybatis自查询递归查找子
先看一下数据库 主键id,名称product_code,父parent,和kind 设计菜单类 setter,getter Dao public interface ProductMapper { L ...
- react组件间的传值方法
关于react的几个网站: http://react.css88.com/ 小书:http://huziketang.mangojuice.top/books/react/ http://www.re ...
- CentOS 7 bonding模式双网卡绑定
1.1 查看系统内核是否支持bonding [root@cobbler-node1 ~]# cat /boot/config-3.10.0-693.el7.x86_64 | grep -i bo ...
- mybatis的环境搭建
mybatis是一个持久层框架,其主要思想就是想将程序中大量的SQL语句剥离出来,配置在配置文件中,实现SQL的灵活配置. 使得SQL与程序代码分离,即在不修改程序代码的情况下,直接在配置文件中修改S ...