POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 10306 | Accepted: 3519 |
Description
Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.
Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.
While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.
The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.
In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.
Help the cows find the maximum fun value per unit time that they can achieve.
Input
* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti
Output
* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.
Sample Input
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
Sample Output
6.00
题目链接:POJ 3621
最优比例环的题,也是用01分数规划写,目的是找到一个环,使得该环上${\Sigma w_v \over \Sigma w_e}$最大,那么我们设比例为r,当${\Sigma w_v \over \Sigma w_e}>r$时说明可以找到更大的r'作为答案,由这个式子有可以得到:$\Sigma w_v - r * \Sigma w_e>0$,即存在左边的式子结果>0即可,若要找存在一个数大于0,那么肯定找这个数可能的最大值,那显然把边权重新赋值为$w_{vi}-r*w_{e}$,然后这式子跟SPFA找正环有什么关系?可以发现$\Sigma w_v - r * \Sigma w_e$这个式子代表了这个环上用$w_{vi}-r*w_{ei}$作为新边权的所有边权之和,如果这个和大于0,那显然这个环上存在正环,即有不存在最长路,那每一次SPFA找最长路看看是否存在即可,当然也把式子加个负号,然后用负环检测也可以做
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = 5010;
const double eps = 1e-6;
struct edge
{
int to, nxt;
double w;
edge() {}
edge(int _to, int _nxt, double _w): to(_to), nxt(_nxt), w(_w) {}
};
edge E[M];
int head[N], tot;
int vis[N], cnt[N];
double d[N];
int arr[N]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, double w)
{
E[tot] = edge(t, head[s], w);
head[s] = tot++;
}
int spfa(int n, double g)
{
queue<int>Q;
for (int i = 1; i <= n; ++i)
{
d[i] = 0;
vis[i] = 1;
cnt[i] = 1;
Q.push(i);
}
while (!Q.empty())//找正环
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
double w = arr[u] - g * E[i].w;
if (d[v] < d[u] + w)
{
d[v] = d[u] + w;
if (!vis[v])
{
vis[v] = 1;
Q.push(v);
if (++cnt[v] > n)
return 1;
}
}
}
}
return 0;
}
int main(void)
{
int n, m, a, b, i;
double w;
while (~scanf("%d%d", &n, &m))
{
init();
for (i = 1; i <= n; ++i)
scanf("%d", &arr[i]);
for (i = 1; i <= m; ++i)
{
scanf("%d%d%lf", &a, &b, &w);
add(a, b, w);
}
double L = 0, R = 1000;
double ans = 0;
while (fabs(R - L) >= eps)
{
double mid = (L + R) / 2.0;
if (spfa(n, mid))
{
L = mid;
ans = mid;
}
else
R = mid;
}
printf("%.2f\n", ans);
}
return 0;
}
POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)的更多相关文章
- POJ 3621 Sightseeing Cows [最优比率环]
感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ3621 Sightseeing Cows 最优比率环 二分法
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题
http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...
- [POJ 3621] Sightseeing Cows
[题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...
- POJ 3621 Sightseeing Cows (最优比率环 01分数划分)
题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...
- POJ3621 Sightseeing Cows(最优比率环)
题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...
- POJ 3621 Sightseeing Cows | 01分数规划
题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...
- POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)
题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大. 析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0 ...
随机推荐
- 【洛谷2519】[HAOI2011] problem a(动态规划)
点此看题面 大致题意: 一次考试共有\(n\)个人参加,第\(i\)个人说有\(a_i\)个人分数比他高,\(b_i\)个人分数比他低.求最少有几个人说谎. 动态规划 刚看完题目可以说是一头雾水. 仔 ...
- vuejs属性绑定和双向绑定
属性绑定 html <div v-bind:title="title">hello world</div> js new Vue({ el:'#root', ...
- 【转】 Solr的SolrCloud与Master-slave主从模式对比
第一印象 SolrCloud是Solr4.0引入的,主要应对与商业场景.它很像master-slave,却能自动化的完成以前需要手动完成的操作.利用ZooKeeper这个工具去监控整个Solr集群,以 ...
- oc字典
#import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepool { ...
- js call 函数
function bb(){ console.log(this.x) } function cc(){ this.x = 200 } var p = new cc(); bb.call(p) // ...
- lrzsz包中的rz和sz命令
安装包:lrzsz rz命令:将物理机文件复制到虚拟机 sz命令:将虚拟机文件复制到物理机
- pyhon之99乘法表
1.长方形完整格式 for i in range(1,10): for j in range(1,10): print("%d*%d" %(j,i),end=" &quo ...
- linux配置邮箱服务
配置邮箱服务Linux常见的邮箱客户端是mail或mutt:服务端有sendmail服务(centos 5).postfix服务(centos 6).这里我们不使用本地的邮件服务,而是使用本地的邮件客 ...
- 常用的几个JQuery代码片段
1. 导航菜单背景切换效果 在项目的前端页面里,相对于其它的导航菜单,激活的导航菜单需要设置不同的背景.这种效果实现的方式有很多种,下面是使用JQuery实现的一种方式: //注意:代码需要修饰完善 ...
- Ubuntu设置代理上网
代理服务器(Proxy Server)是个人网络和Internet服务商之间的中间代理机构,它负责转发合法的网络信息,对转发进行控制和登记.代理服务器作为连接Internet(广域网)与Intrane ...