UVA 11383 - Golden Tiger Claw

题目链接

题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列之和的和最小

思路:A二分图完美匹配的扩展,行列建二分图,权值为矩阵对应位置的值,做一次KM算法后。全部顶标之和就是最小的

代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int MAXNODE = 505; typedef int Type;
const Type INF = 0x3f3f3f3f; struct KM {
int n;
Type g[MAXNODE][MAXNODE];
Type Lx[MAXNODE], Ly[MAXNODE], slack[MAXNODE];
int left[MAXNODE];
bool S[MAXNODE], T[MAXNODE]; void init(int n) {
this->n = n;
} void add_Edge(int u, int v, Type val) {
g[u][v] = val;
} bool dfs(int i) {
S[i] = true;
for (int j = 0; j < n; j++) {
if (T[j]) continue;
Type tmp = Lx[i] + Ly[j] - g[i][j];
if (!tmp) {
T[j] = true;
if (left[j] == -1 || dfs(left[j])) {
left[j] = i;
return true;
}
} else slack[j] = min(slack[j], tmp);
}
return false;
} void update() {
Type a = INF;
for (int i = 0; i < n; i++)
if (!T[i]) a = min(a, slack[i]);
for (int i = 0; i < n; i++) {
if (S[i]) Lx[i] -= a;
if (T[i]) Ly[i] += a;
}
} void km() {
for (int i = 0; i < n; i++) {
left[i] = -1;
Lx[i] = -INF; Ly[i] = 0;
for (int j = 0; j < n; j++)
Lx[i] = max(Lx[i], g[i][j]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) slack[j] = INF;
while (1) {
for (int j = 0; j < n; j++) S[j] = T[j] = false;
if (dfs(i)) break;
else update();
}
}
}
} gao; int n; int main() {
while (~scanf("%d", &n)) {
gao.init(n);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
scanf("%d", &gao.g[i][j]);
}
gao.km();
int ans = 0;
for (int i = 0; i < n; i++) {
printf("%d%c", gao.Lx[i], i == n - 1 ? '\n' : ' ');
ans += gao.Lx[i];
}
for (int i = 0; i < n; i++) {
printf("%d%c", gao.Ly[i], i == n - 1 ? '\n' : ' ');
ans += gao.Ly[i];
}
printf("%d\n", ans);
}
return 0;
}

UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)的更多相关文章

  1. UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)

    题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...

  2. Uva - 11383 - Golden Tiger Claw

    题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...

  3. UVA 11383 Golden Tiger Claw 金虎爪(KM算法)

    题意: 给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立.先输row ...

  4. UVA 11383 Golden Tiger Claw 题解

    题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...

  5. 【KM算法】UVA 11383 Golden Tiger Claw

    题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...

  6. 【UVA 11383】 Golden Tiger Claw (KM算法副产物)

    Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But EvilBoy Geni ...

  7. UVA 1411 - Ants(二分图完美匹配)

    UVA 1411 - Ants 题目链接 题意:给定一些黑点白点,要求一个黑点连接一个白点,而且全部线段都不相交 思路:二分图完美匹配,权值存负的欧几里得距离,这种话,相交肯定比不相交权值小,所以做一 ...

  8. UVA 10888 - Warehouse(二分图完美匹配)

    UVA 10888 - Warehouse option=com_onlinejudge&Itemid=8&page=show_problem&category=562& ...

  9. Golden Tiger Claw(二分图)

    Golden Tiger Claw 题意 找到和最小的两个序列a,b满足对于任意i,j有a[i]+b[j]>=c[i][j](矩阵c给出). solution 裸的二分图就水过了-- #incl ...

随机推荐

  1. UIDynamicBehavior的简单使用:接球小游戏

    一.概念扩充: 1.在开发中,我们可以使用UIKit中提供的仿真行为,实现与现实生活中类似的物理仿真动画,UIKit动力学最大的特点是将现实世界动力驱动的动画引入了UIKit,比如重力,铰链连接,碰撞 ...

  2. 第14章 Wi-Fi系统应用 14.1 了解Wi-Fi系统的结构

    Android平台中Wi-Fi系统从上到下主要包括Java框架类.Android适配器库.wpa_supplicant守护进程.驱动程序和协议,这几部分的系统结构如图14-3所示. (1)Wi-Fi用 ...

  3. ul和li里面的list-style

    对ul   list-type  只是设置ul的样式对li    list-type 是对li的综合样式设定  语法是 li-style:list-style-type/list-style-imag ...

  4. C/C++中输入多组数据方法

    --------开始-------- 对于刚开始学编程的人来说每次基本上就是一次数据输入,多次的话基本也是会给定一个数组的大小,但随着做刷算法题开始,题目有的会不直接告诉输入几组数据,基本输入都是多组 ...

  5. JNI学习积累之一 ---- 常用函数大全

    主要资料来源: 百度文库的<JNI常用函数> . 同时对其加以了补充 . 要素  :1. 该函数大全是基于C语言方式的,对于C++方式可以直接转换 ,例如,对于生成一个jstring类型的 ...

  6. 在使用实体框架(Entity Framework)的应用中加入审计信息(Audit trail)跟踪数据的变动

    在一些比较重要的业务系统中,通常会要求系统跟踪数据记录的变动情况.系统要记录什么时间,什么人,对那些信息进行了变动. 比较简单的实现方式是在每个表中加入两个字段CreatedBy和CreatedAt, ...

  7. 上传文件到linux系统方法

    linux,windows filezilla 方法/步骤     下载 Filezilla client工具,此客户端为免费软件,下载完成后安装,安装一路下一步在这里就不过多阐述了,下载地址 htt ...

  8. 如何在Eclipse中创建Web服务器

    使用Eclipse开发Web项目时,需要先配置Web服务器,如果已经配置好Web服务器,就不需要再重新配置了.也就是说,本节的内容不是开发每个项目时,都必须经过的步骤.创建Web服务器的具体步骤如下: ...

  9. 青橙 M4 解锁BootLoader 并刷入recovery ROOT

    首先下载工具链接:https://pan.baidu.com/s/1o9xzTEi密码:7s7a 备用连接:https://pan.baidu.com/s/1bq47TMn 本篇教程教你如何傻瓜式解锁 ...

  10. 【Linux】计划任务管理crontab、at

    一.计划任务管理 —— crontab 1. crontab 命令 •  按照预先设置的时间周期(分钟.小时.天…… )重复执行用户指定的命令操作,属于周期性计划任务,默认打开“/var/spool/ ...