最长公共子序列 nlogn
先来个板子
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+, M = 1e6+, mod = 1e9+, inf = 1e9+;
typedef long long ll; struct node
{
int c;
int num;
} u[N]; int i,j,k = ,n,m,x,y = ,T = ,ans = ,big = ,cas = ,num = ,len = ;
bool flag = ; bool cmp(node a,node b)
{
if (a.c==b.c) return a.num>b.num;
return a.c<b.c;
} vector <int> p;
int a[N],b[N],c[N];
int lena,lenb,dp[N]; int main()
{
scanf("%d%d",&lena,&lenb);
for(int i=;i<lena;i++) scanf("%d",&a[i]);
for(int i=;i<lenb;i++) scanf("%d",&b[i]);
for (i=;i<lenb;i++)
{
u[i].c=b[i];
u[i].num=i;
}
sort(u,u+lenb,cmp);//对b串排序
for (i=;i<lenb;i++)//排序后存入字符串c中,便于使用lower_bound
{
c[i]=u[i].c;
}
c[lenb]=1e9+;
for (i=;i<lena;i++)//计算A中每个元素在B中的序号
{
k=lower_bound(c,c+lenb,a[i])-c;
while (k<lenb && a[i]==c[k])
{
p.push_back(u[k].num);
k++;
}
}
if(p.size()==) {
printf("1\n");
return ;
}
n=p.size();
dp[] = p[] ; dp[] = -inf ;
for( i = ans = ; i < n ; i++)
{
int l = , r = ans ;
while( l <= r )
{
int mid = ( l + r ) >> ;
if( dp[mid] >= p[i] ) r = mid - ;
else l = mid + ;
}
if( r == ans ) ans++,dp[r+] = p[i] ;
else if( dp[r+] > p[i] ) dp[r+] = p[i] ;
}
printf("%d\n",ans+);
return ;
}
最长公共子序列问题:
给定2个字符串,求其最长公共子串。如abcde和dbada的最长公共字串为bd。
动态规划:dp[i][j]表示A串前i个和B串前j个的最长公共子串的长度。
则
若A[i] == B[j] , dp[i][j] = dp[i-1][j-1] + 1;
否则 dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
时间复杂度O(N*M)。
dp[i][j]仅在A[i]==B[j]处才增加,对于不相等的地方对最终值是没有影响的。
故枚举相等点处可以对其进行优化。
则对于dp[i][j](这里只计算A[i]==B[j]的i和j),取最大的dp[p][q],满足(p<i,q<j),通过二叉搜索树可以再logn的时间里获取到最大的dp[p][q],区间在[0,j)。
这里也可将其转化为最长递增子序列问题。
举例说明:
A:abdba
B:dbaaba
则1:先顺序扫描A串,取其在B串的所有位置:
2:a(2,3,5) b(1,4) d(0)。
3:用每个字母的反序列替换,则最终的最长严格递增子序列的长度即为解。
替换结果:532 41 0 41 532
最大长度为3.
简单说明:上面的序列和最长公共子串是等价的。
对于一个满足最长严格递增子序列的序列,该序列必对应一个匹配的子串。
反序是为了在递增子串中,每个字母对应的序列最多只有一个被选出。
反证法可知不存在更大的公共子串,因为如果存在,则求得的最长递增子序列不是最长的,矛盾。
最长递增子序列可在O(NLogN)的时间内算出。
dp[i] = max(dp[j]+1) ( 满足 a[i] > a[j] && i > j )
显然对于同样的如dp[k] = 3,假定k有多个,记为看k1,k2,.....,km 设k1 < k2 < .... < km
在计算dp[i]的时候,k2,k3,....,km显然对结果没有帮助,取当前最小的k,
满足ans[k] = p (最小的p使得dp[p]=k) ,每次二分,更新ans[dp[i]] = min(ans[dp[i]],i).
ps:LCS在最终的时间复杂度上不是严格的O(nlogn),不知均摊上是不是。
举个退化的例子:
如A:aaa
B:aaaa
则序列321032103210
长度变成了n*m ,最终时间复杂度O(n*m*(lognm)) > O(n*m)。
这种情况不知有没有很好的解决办法。
最长公共子序列 nlogn的更多相关文章
- 【算法】最长公共子序列(nlogn)
转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...
- P3402 最长公共子序列(nlogn)
P3402 最长公共子序列 题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子 ...
- 洛谷1439:最长公共子序列(nlogn做法)
洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- Longest Common Substring(最长公共子序列)
Longest Common Substring Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- 洛谷P1439 【模板】最长公共子序列
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...
- LIS LCS 最长上升子序列 最长公共子序列 ...
最长上升子序列,问题定义:http://blog.csdn.net/chenwenshi/article/details/6027086 代码: public static void getData( ...
随机推荐
- F - Micro-World(简单模拟)
Problem description You have a Petri dish with bacteria and you are preparing to dive into the harsh ...
- VMware中linux安装jdk
首先安装linux系统 如何将jdk安装包复制到linux中不做概述,可以使用xftp工具,或者Xshell,或者其他方式. 1.下载jdk包:本章使用的为后缀为tar.gz的文件(不需要安装),如j ...
- mysql数据库之存储过程入门
引用:百度百科 存储过程 存储过程(Stored Procedure)是在大型数据库系统中,一组为了完成特定功能的SQL 语句集,存储在数据库中,经过第一次编译后再次调用不需要再次编译,用户通过指定存 ...
- SqlSever2005 一千万条以上记录分页数据库优化经验总结【索引优化 + 代码优化】
对普通开发人员来说经常能接触到上千万条数据优化的机会也不是很多,这里还是要感谢公司提供了这样的一个环境,而且公司让我来做优化工作.当数据库中的记录不超过10万条时,很难分辨出开发人员的水平有多高,当数 ...
- 【Linux】ubuntu中怪异的vi编辑器
由于前几天一场windows系统的比特币勒索病毒,我下狠心装了Linux的ubuntu版本.可是今天在使用命令行中的vi编辑器时出现了怪异的现象:backspace不能删除,编辑模式回车随机出现字母. ...
- Assembly之instruction之CMP
CMP[.W] Compare source and destinationCMP.B Compare source and destination Syntax CMP src,dst or ...
- 分布式机器学习框架:MxNet 前言
原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台 ...
- JSP_内置对象_out
out对象是JspWriter类的实例,是向客户端输出内容的常用对象,常用方法如下: void println() 向客户端打印字符串 void clear() 清除缓冲区的内容,如果在flush之后 ...
- Laravel Cache 缓存使用
导入:use Cache; Cache::put('key', 'value', $minutes); 添加一个缓存 Cache 门面的 get 方法用于从缓存中获取缓存项,如果缓存项不存在,返回 n ...
- drf04 drf视图类
REST framework 提供了众多的通用视图基类与扩展类,以简化视图的编写. 1.2个视图基类 1.1. APIView rest_framework.views.APIView APIView ...