题目:

Round Numbers
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8492   Accepted: 2963

Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first.
They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,

otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus,
9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range Start..Finish

Sample Input

2 12

Sample Output

6

思路基本上和网上http://zhyu.me/acm/poj-3252.html做的非常类似:

举例说明,

[2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1]

即:Rn[start,finish]=Rn[0,finish]-Rn[0,start-1]

所以关键是给定一个X,求出Rn[0,X]

如今如果X=10100100 

这个X的二进制总共是8位,不论什么一个小于8位的二进制都小于X

第一部分。求出长度为[0,7]区间内的二进制是RoundNumber的个数

对于一个长度为Len的二进制(最高位为1),怎样求出他的RoundNumbers呢(如果为用R(len)来表达)。分为奇数和偶数两种情况

1、奇数情况:在Len=2k+1的情况下,最高位为1。剩下2k位,至少须要k+1为0

用C(m,n)表示排列组合数:从m个位置选出n个位置的方法

R(len)=C(2k,k+1)+C(2k,k+2)+...+C(2k,2k).

因为 A:C(2k,0)+C(2k,1)+...+C(2k,2k)=2^(2k)

B:C(2k,0)=C(2k,2k), C(2k,1)=C(2k,2k-1) ,,C(2k,i)=C(2k,2k-i)

于是  C(2k,0)+C(2k,1)+...+C(2k,2k)

= C(2k,0)+C(2k,1)+...+C(2k,k)+C(2k,k+1)+C(2k,K+2)+...+C(2k,2k)

= 2*R(len)+C(2k,k)

=2^(2k)

所以R(len)=1/2*{2^(2k)-C(2k,k)};

2. 偶数情况 len=2*k,类似能够推到 R(len)=1/2*(2^(2k-1));

第二部分,对于上面这个长度为8的样例:即X=10100100,首先假设本身是RoundNumbers,第二部分的结果总数+1

第一部分已经将长度小于8的部分求出。如今要求长度=8的RoundNumber数目

长度为8,所以第一个1不可改变

如今到第二个1,假设Y是前缀如100*****的二进制。这个前缀下。后面取0和1必定小于X,已经有2个0,一个1,剩下的5个数字中至少须要2个0,

所以把第二个1改为0:能够有C(5,2)+C(5,3)+C(5,4)+C(5,5)

如今第三个1,也就是前最为101000**。相同求出,至少须要0个0就可,所以有C(2,0)+C(2,1)+C(2,2)个RoundNumbers

。。。

将所有除了第一个1以外的1所有变为0,如上算出有多少个RoundNumbers,结果相加(因为前缀不一样。所以后面无论怎么组合都是唯一的)





将第一部分和第二部分的结果相加。就是最后的结果了。

唯一特别须要注意的是在计算组合数的时候非常easy越界。尽管上面分析了计算结果在int范围内是没有问题的,可是计算组合数中间过程还是非常可能越界,所以这里要特别注意。

解决方法是利用C(n,m)=C(n-1,m-1)+C(n-1,m)进行递归计算,而不是使用传统的乘法计算方式。为了更有效率一点,能够事先计算好n=1~32,m=1~32的组合数的结果然后存起来。

import java.util.*;

public class Combinatorics_RoundNumbers3252 {

	/**
* @param args
*/
public static void main(String[] args) { Scanner in=new Scanner(System.in);
Init();
while(in.hasNext())
{
int a=in.nextInt();
int b=in.nextInt();
//System.out.println(roundNumber(a-1)+" " +roundNumber(b));
System.out.println(roundNumber(b)-roundNumber(a-1));
} } static int c[][]=new int[35][35];
public static void Init(){
for(int i=0;i<33;i++){
c[i][0]=c[i][i]=1;
for(int j=1;j<i;j++)
c[i][j]=c[i-1][j]+c[i-1][j-1];
} } public static int roundNumber(int value)
{
char b[]=toBinary(value);
int sum=0;
for(int len=1;len<b.length;len++)
{
for(int j=(len+1)/2;j<len;j++)
sum+=c[len-1][j];
}
int zeros=0;
for(int i=1;i<b.length;i++)
{
if(b[i]=='1')
{
int k=(b.length+1)/2;
int m=Math.max(0, k-(zeros+1));
int n=b.length-i-1;
for(int j=n;j>=m;j--)
sum+=c[n][j];
}
else
{
zeros++;
}
}
if(2*zeros>=b.length)
sum++;
return sum;
} private static char[] toBinary(int value) {
return Integer.toBinaryString(value).toCharArray();
} /*public static int roundNumberOfLength(int len)
{
int k=len/2;
if(len%2==0)
{
return (1<<(len-2));
}
else
{
return ((1<<(len-1))-choose(len-1,k))/2;
}
}*/ public static int choose(int n, int m) { if(n==0)
return 0;
if(m==0||m==n)
return 1;
if(m>n)
return 0;
return choose(n-1,m-1)+choose(n-1,m);
} }

poj3252-Round Number 组合数学的更多相关文章

  1. POJ3252——Round Number(组合数学)

    Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...

  2. [BZOJ1662][POJ3252]Round Numbers

    [POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...

  3. [poj3252]Round Numbers_数位dp

    Round Numbers poj3252 题目大意:求一段区间内Round Numbers的个数. 注释:如果一个数的二进制表示中0的个数不少于1的个数,我们就说这个数是Round Number.给 ...

  4. POJ 3252 Round Numbers 组合数学

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13381   Accepted: 5208 Description The ...

  5. Round Numbers(组合数学)

    Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10484 Accepted: 3831 Descri ...

  6. poj3252 Round Numbers

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7625   Accepted: 2625 Des ...

  7. POJ 3252 Round Number(数位DP)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6983   Accepted: 2384 Des ...

  8. POJ3252 Round Numbers —— 数位DP

    题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Su ...

  9. poj3252 Round Numbers(数位dp)

    题目传送门 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16439   Accepted: 6 ...

随机推荐

  1. Vue 做项目经验

    Vue 做项目经验 首先需要知道最基本的东西是: Vue 项目打包:npm run build Vue生成在网页上看的端口:npm run dev 修改端口号的地方在: config文件夹下index ...

  2. 【codeforces 794C】Naming Company

    [题目链接]:http://codeforces.com/contest/794/problem/C [题意] 有n个位置; 两个人; 每个人都有n个字符组成的集合s1,s2(可以有重复元素); 然后 ...

  3. (转)redis源代码分析 – event library

    每个cs程序尤其是高并发的网络服务端程序都有自己的网络异步事件处理库,redis不例外. 事件库仅仅包括ae.c.ae.h,还有3个不同的多路复用(本文仅描述epoll)的wrapper文件,事件库封 ...

  4. ASP.NET-RedirectToAction只能使用get方法

    两个同名Action共同使用return View() return RedirectToAction("test", new { ls = list.Fct_OrderList ...

  5. 求第K大的数字

    除了用最大堆(求最小的K个数)或最小堆(求最大的K个数) 可以用partition,然后直到返回index为k为止.参数可以是实际下标.然后返回index,就是partition的pivot的位置.

  6. HDU 3625

    有点置换群的味道. 当撞开一个门后,能打开一连串的门,即是可以排成一个圈.求的是种数,于是,可以使用第一类斯特林数,求出撞了0~K次的种数. 但是,注意,当第一个门为独自一个圈时,是不可行的,因为这代 ...

  7. MySQL优化之——集群搭建步骤具体解释

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46833179 1 概述 MySQL Cluster 是MySQL 适合于分布式计算 ...

  8. 实践补充 Installing Tomcat 7.0.x on OS X

    我的 Mac 下是1.6的 SDK,下载 Tomcat 8.0 执行后,訪问 http://127.0.0.1:8080 并无反应,并且关闭脚本会报错 : Unsupported major.mino ...

  9. zzulioj--1600--直线与圆(简单数学几何)

     1600: 直线与圆 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 360  Solved: 73 SubmitStatusWeb Board ...

  10. zzulioj--1712--Monty Hall problem(蒙提霍尔问题)

     1721: Monty Hall problem Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 186  Solved: 71 SubmitSt ...