BNU 13259.Story of Tomisu Ghost 分解质因子
Story of Tomisu Ghost
It is now 2150 AD and problem-setters are having a horrified time as the ghost of a problem-setter from the past, Mr. Tomisu, is frequently disturbing them. As always is the case in most common ghost stories, Mr. Tomisu has an unfulfilled dream: he had set 999 problems throughout his whole life but never had the leisure to set the 1000th problem. Being a ghost he cannot set problems now so he randomly asks problem-setters to complete one of his unfinished problems. One problem-setter tried to convince him saying that he should not regret as 999 is nowhere near 1024 (210) and he should not worry about power of 10 being an IT ghost. But the ghost slapped him hard after hearing this. So at last one problem setter decides to complete his problem:
"n! (factorial n) has at least t trailing zeroes in b based number system. Given the value of n and t, what is the maximum possible value of b?"
Input
Input starts with an integer T (≤ 4000), denoting the number of test cases.
Each case contains two integers n (1 < n ≤ 105) and t (0 < t ≤ 1000). Both n and t will be given in decimal (base 10).
Output
For each case, print the case number and the maximum possible value of b. Since b can be very large, so print b modulo 10000019. If such a base cannot be found then print -1instead.
Sample Input
Sample Input |
Output for Sample Input |
|
4 1000 1000 1000 2 10 8 4 2 |
Case 1: -1 Case 2: 5227616 Case 3: 2 Case 4: 2 |
Source
题意:给你一个n,t, n的阶乘在b进制下的数大小,数尾有t个0,问最大的b是多少,不存在b输出-1;
题解:数尾有t个0,也就是对于b有t倍的关系,我们将1-n内所有质因子的个数找出,是否有大于等于t的就可以加入答案,否则-1
///
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;ch=getchar();
}
while(ch>=''&&ch<=''){
x=x*+ch-'';ch=getchar();
}return x*f;
}
//****************************************
const double PI = 3.1415926535897932384626433832795;
const double EPS = 5e-;
#define maxn 100000+5
#define mod 10000019 int n,t,H[maxn],HH[maxn];
vector<int >G[maxn],P;
ll pows(ll x,ll tt) {
ll tmp=;
for(int i=;i<=tt;i++) {
tmp=(tmp*x)%mod;
}
return tmp;
}
int main() {
int an=;mem(HH);
for(int i=;i<=;i++) {
if(!HH[i]) {P.pb(i);
for(int j=i+i;j<=;j+=i) {
HH[j]=;
}
}
}
int T=read(),oo=;
while(T--) {
mem(H);
int flag=;
n=read(),t=read();
printf("Case %d: ",oo++);
ll ans=;
for(int k=;k<P.size()&&P[k]<=n;k++) {
ll c=P[k],tt=;
ll y=n/z;
while(y) {
tt+=y;
y=y/z;
}
if(tt>=t){
flag=;
ans=(ans*pows(c,tt/t))%;
}
}
if(!flag) printf("-1\n");
else
printf("%lld\n",ans);
}
return ;
}
代码
BNU 13259.Story of Tomisu Ghost 分解质因子的更多相关文章
- UVA 10780 Again Prime? No Time. 分解质因子
The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- hdu6237 分解质因子
题意:给一堆石子,每次移动一颗到另一堆,要求最小次数使得,所有石子数gcd>1 题解:枚举所有质因子,然后找次数最小的那一个,统计次数时,我们可以事先记录下每堆石子余质因子 的和,对所有石子取余 ...
- NYOJ-476谁是英雄,分解质因子求约数个数!
谁是英雄 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 十个数学家(编号0-9)乘气球飞行在太平洋上空.当横越赤道时,他们决定庆祝一下这一壮举.于是他们开了一瓶香槟.不 ...
- Codeforces Round #828 (Div. 3) E2. Divisible Numbers (分解质因子,dfs判断x,y)
题目链接 题目大意 给定a,b,c,d四个数,其中a<c,b<c,现在让你寻找一对数(x,y),满足一下条件: 1. a<x<c,b<y<d 2. (x*y)%(a ...
- HDU 4135 Co-prime (容斥+分解质因子)
<题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. ...
- Minimum Sum LCM UVA - 10791(分解质因子)
对于一个数n 设它有两个不是互质的因子a和b 即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd ...
- N!分解质因子p的个数_快速求组合数C(n,m)
int f(int n,int p) { ) ; return f(n/p,p) + n/p; } https://www.xuebuyuan.com/2867209.html 求组合数C(n,m)( ...
- HDU1452:Happy 2004(求因子和+分解质因子+逆元)上一题的简单版
题目链接:传送门 题目要求:求S(2004^x)%29. 题目解析:因子和函数为乘性函数,所以首先质因子分解s(2004^x)=s(2^2*x)*s(3^x)*s(167^x); 因为2与29,166 ...
随机推荐
- Mysql中的索引()key 、primary key 、unique key 与index区别)
CREATE TABLE pre_forum_post ( pid int(10) unsigned NOT NULL COMMENT '帖子id', fid mediumint(8) unsigne ...
- 我的github教程
这篇文章记录个人常用的一些命令,和记不住的一些命令. 安装 在 Windows 上安装 Git ,有个叫做 msysGit 的项目提供了安装包: http://msysgit.github.io/ 完 ...
- JVM 优化之逃逸分析
整理自 周志明<深入JVM> 1, 是JVM优化技术,它不是直接优化手段,而是为其它优化手段提供依据. 2,逃逸分析主要就是分析对象的动态作用域. 3,逃逸有两种:方法逃逸和线程逃逸. ...
- C#——计时器的操作
我们可以用Stopwatch类获得程序的运行时间,在优化代码时,可以用此方法来查看优化前后程序所耗费的时间 static void Main(string[] args) { Stopwatch sw ...
- json 新用
如果使用struts2的action,可以省去属性赋值的工夫. 但是假如你没有使用struts2,而且使用的是ajax请求,通过json来传递参数.那我下面所说的对你可能是一个很好的解脱,从此告别re ...
- java 类名.this
类名为this的限定词. 相对于内部类:有多个this: 1.内部类本身的this: 2.内部类的环境类的this: 类名.this,就是为了对这些this指针的指向做出限定. 区别于类名.class ...
- Concurrency and Application Design
Concurrency and Application Design In the early days of computing, the maximum amount of work per un ...
- parseInt()函数
parseInt()转化整形是从左往右,取出第一个整型,如:10a10b,则显示10: //20170719补充 如果该字符串第一个字符是0,那么该字符串会基于八进制而非十进制来求值,在八进制中,8和 ...
- iptables详解(4):iptables匹配条件总结之一
所属分类:IPtables Linux基础 在本博客中,从理论到实践,系统的介绍了iptables,如果你想要从头开始了解iptables,可以查看iptables文章列表,直达链接如下 iptab ...
- 20170622-编译Uboot错误
参照:http://docs.widora.io/zh/uboot编译 Assembler messages:Error: unknown architecture `4kc' Error: unre ...