将tflearn的模型保存为pb,给TensorFlow使用
参考:https://github.com/tflearn/tflearn/issues/964
解决方法:
"""
Tensorflow graph freezer
Converts Tensorflow trained models in .pb Code adapted from:
https://gist.github.com/morgangiraud/249505f540a5e53a48b0c1a869d370bf#file-medium-tffreeze-1-py
""" import os, argparse
os.environ['TF_CPP_MIN_LOG_LEVEL'] = ''
import tensorflow as tf
from tensorflow.python.framework import graph_util def freeze_graph(model_folder,output_graph="frozen_model.pb"):
# We retrieve our checkpoint fullpath
try:
checkpoint = tf.train.get_checkpoint_state(model_folder)
input_checkpoint = checkpoint.model_checkpoint_path
print("[INFO] input_checkpoint:", input_checkpoint)
except:
input_checkpoint = model_folder
print("[INFO] Model folder", model_folder) # Before exporting our graph, we need to precise what is our output node
# This is how TF decides what part of the Graph he has to keep and what part it can dump
output_node_names = "FullyConnected/Softmax" # NOTE: Change here # We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True # We import the meta graph and retrieve a Saver
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices) # We retrieve the protobuf graph definition
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def() # We start a session and restore the graph weights
with tf.Session() as sess:
saver.restore(sess, input_checkpoint) # We use a built-in TF helper to export variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
input_graph_def, # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
) # Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node)) print("[INFO] output_graph:",output_graph)
print("[INFO] all done") if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Tensorflow graph freezer\nConverts trained models to .pb file",
prefix_chars='-')
parser.add_argument("--mfolder", type=str, help="model folder to export")
parser.add_argument("--ograph", type=str, help="output graph name", default="frozen_model.pb") args = parser.parse_args()
print(args,"\n") freeze_graph(args.mfolder,args.ograph) # However, before doing model.save(...) on TFLearn i have to do
# ************************************************************
# del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:]
# ************************************************************ """
Then I call this command
python tf_freeze.py --mfolder=<path_to_tflearn_model> Note The <path_to_tflearn_model> must not have the ".data-00000-of-00001".
The output_node_names variable may change depending on your architecture. The thing is that you must reference the layer that has the softmax activation function.
"""
注意:
1、需要在 tflearn的model.save 前:
del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:]
作用:去除模型里训练OP。
参考:https://github.com/tflearn/tflearn/issues/605#issuecomment-298478314
2、如果是有batch normalzition,或者残差网络层,会出现:
Error when loading the frozen graph with tensorflow.contrib.layers.python.layers.batch_norm
ValueError: graph_def is invalid at node u'BatchNorm/cond/AssignMovingAvg/Switch': Input tensor 'BatchNorm/moving_mean:0' Cannot convert a tensor of type float32 to an input of type float32_ref
freeze_graph.py doesn't seem to store moving_mean and moving_variance properly
An ugly way to get it working:
manually replace the wrong node definitions in the frozen graph
RefSwitch --> Switch + add '/read' to the input names
AssignSub --> Sub + remove use_locking attributes
则需要在restore模型后加入:
# fix batch norm nodes
for node in gd.node:
if node.op == 'RefSwitch':
node.op = 'Switch'
for index in xrange(len(node.input)):
if 'moving_' in node.input[index]:
node.input[index] = node.input[index] + '/read'
elif node.op == 'AssignSub':
node.op = 'Sub'
if 'use_locking' in node.attr: del node.attr['use_locking']
参考:https://github.com/tensorflow/tensorflow/issues/3628
I met the same issue when I was trying to export graph and variables by saved_model module. And finally I found a walk around to fix this issue:
Remove the TRAIN_OPS collections from graph collection. e.g.:
with dnn.graph.as_default():
del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:]
The dumped graph may not be available for training again (by tflearn), but should be able to perform prediction and evaluation. This is useful when serving model by another module or language (e.g. tensorflow serving or tensorflow go binding). I'll do more further tests about this.
If you wanna re-train the model, please use the builtin "save" method and re-construction the graph and load the saved data when re-training.
2、可能需要在代码修改这行,
output_node_names = "FullyConnected/Softmax" # NOTE: Change here 参考:https://gist.github.com/morgangiraud/249505f540a5e53a48b0c1a869d370bf#file-medium-tffreeze-1-py
@vparikh10 @ratfury @rakashi I faced the same situation just like you.
From what I understood, you may have to change this line according to your network definition.
In my case, instead of having output_node_names = "Accuracy/prediction", I have output_node_names = "FullyConnected_2/Softmax".
I made this change after reading this suggestion
对我自己而言,写成softmax或者Softmax都是不行的!然后我将所有的node names打印出来:
打印方法:
with tf.Session() as sess:
model = get_cnn_model(max_len, volcab_size)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True, batch_size=1000, n_epoch=1)
init_op = tf.initialize_all_variables()
sess.run(init_op) for v in sess.graph.get_operations():
print(v.name)
然后确保output_node_names在里面。
附:gist里的代码,将output node names转换为参数
import os, argparse import tensorflow as tf # The original freeze_graph function
# from tensorflow.python.tools.freeze_graph import freeze_graph dir = os.path.dirname(os.path.realpath(__file__)) def freeze_graph(model_dir, output_node_names):
"""Extract the sub graph defined by the output nodes and convert
all its variables into constant
Args:
model_dir: the root folder containing the checkpoint state file
output_node_names: a string, containing all the output node's names,
comma separated
"""
if not tf.gfile.Exists(model_dir):
raise AssertionError(
"Export directory doesn't exists. Please specify an export "
"directory: %s" % model_dir) if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1 # We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path # We precise the file fullname of our freezed graph
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
output_graph = absolute_model_dir + "/frozen_model.pb" # We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True # We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
# We import the meta graph in the current default Graph
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices) # We restore the weights
saver.restore(sess, input_checkpoint) # We use a built-in TF helper to export variables to constants
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
) # Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node)) return output_graph_def if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", type=str, default="", help="Model folder to export")
parser.add_argument("--output_node_names", type=str, default="", help="The name of the output nodes, comma separated.")
args = parser.parse_args() freeze_graph(args.model_dir, args.output_node_names)
将tflearn的模型保存为pb,给TensorFlow使用的更多相关文章
- tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用——模型层次太深,或者太复杂训练时候都不会收敛
tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用. 数据目录在data,data下放了汉字识别图片: data$ ls0 1 10 11 12 13 14 15 ...
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- TensorFlow模型保存和提取方法
一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将Tens ...
- keras中的模型保存和加载
tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. ...
- TensorFlow模型保存和加载方法
TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name= ...
- Tensorflow模型保存与加载
在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提 ...
- tensorflow 三种模型:ckpt、pb、pb-savemodel
1.CKPT 目录结构 checkpoint: model.ckpt-1000.index model.ckpt-1000.data-00000-of-00001 model.ckpt-1000.me ...
- [MISS静IOS开发原创文摘]-AppDelegate存储全局变量和 NSUserDefaults standardUserDefaults 通过模型保存和读取数据,存储自定义的对象
由于app开发的需求,需要从api接口获得json格式数据并保存临时的 app的主题颜色 和 相关url 方案有很多种: 1, 通过AppDelegate保存为全局变量,再获取 2,使用NSUSerD ...
- TensorFlow构建卷积神经网络/模型保存与加载/正则化
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...
随机推荐
- Android开发高手课笔记 - 01 崩溃优化(上):关于“崩溃”那点事
Android 的两种崩溃 Java 崩溃就是在 Java 代码中,出现了未捕获的异常,导致程序异常退出 Native 崩溃一般都是因为在 Native 代码中访问非法地址,也可能是地址对齐出了问题, ...
- PDO访问其他数据库操作及作用
PDO的作用 PDO<!--数据访问抽象层--><!--1.可以访问其他数据库--><!--2.具有事务功能--><!--3.带有预处理语句功能(防止SQL注 ...
- css3背景渐变色代码
从上到下 #grad { background: -webkit-linear-gradient(red, blue); background: -o-linear-gradient(red, b ...
- ASP.net参数传递总结
同一页面.aspx与.aspx.cs之间参数传递 1. .aspx.cs接收.aspx的参数:由于.aspx和.aspx.cs为继承关系,所以.aspx.cs可以直接对.aspx中的ID进行值提取,具 ...
- Python 之数据类型
# Numbers(数字) # int(有符号整型) # long(长整型[也可以代表八进制和十六进制]) # float(浮点型) # complex(复数) # String(字符串) # Lis ...
- EF-Linq
一丶基本语法(from a in Table where a.id="001" select a).Tolist(); 隐式内连接from a in table1 join b i ...
- Oracle数据库的自动备份脚本
@echo off echo ================================================ echo Windows环境下Oracle数据库的自动备份脚本 echo ...
- 洛谷——P2169 正则表达式
P2169 正则表达式 题目背景 小Z童鞋一日意外的看到小X写了一个正则表达式的高级程序,这个正则表达式程序仅仅由字符“0”,“1”,“.”和“*”构成,但是他能够匹配出所有在OJ上都AC的程序的核心 ...
- P1638 逛画展
题目描述 博览馆正在展出由世上最佳的 M 位画家所画的图画. wangjy想到博览馆去看这几位大师的作品. 可是,那里的博览馆有一个很奇怪的规定,就是在购买门票时必须说明两个数字, a和b,代表他要看 ...
- 使用redis和简单token机制校验身份的思路
1. 登录时生成token, 以token为键,以用户信息为值,存储在redis中,设置key过期时间 2. 需要身份验证的接口,带上token 3. 接口校验redis中token是否存在 4. 存 ...