Longest Increasing Subsequences(最长递增子序列)的两种DP实现
/**
@description: Longest Increasing Subsequence
@author: seiyagoo
@create: 2013.10.25
@modified: 2013.10.26
**/
int LIS_1(int A[], int size){ int *LIS = new int[size];
vector<int> *vec = new vector<int>[size]; /* Compute optimized LIS values in bottom up manner */
for(int i=; i < size; i++){
LIS[i]=; //初始化默认长度
int max_j=, flag=;
for(int j=; j < i; j++){ //查表,找出前面最长的序列, 若将A[i]加入LIS[j](LIS[j]+1的含义)的递增子序列比当前的LIS[i]更长, 则更新LIS[i]
if(A[i] > A[j] && LIS[i] < LIS[j]+){
LIS[i] = LIS[j]+;
max_j=j;
flag=;
}
}
if(flag) //copy前面最长子序列到vec[i]
vec[i].insert(vec[i].end(), vec[max_j].begin(), vec[max_j].end());
vec[i].push_back(A[i]); //最后放入A[i]
} /*Show LIS of the current state*/
vector<int>::iterator it;
cout<<left;
for(int i=; i<size; i++){
cout<<setw()<<A[i]<< " --> ";
for(it = vec[i].begin(); it!=vec[i].end(); it++)
cout<<*it<<" ";
cout<<endl;
} /* Pick maximum of all LIS values, namely max{LIS[i]} */
int max_len=;
for(int i = ; i < size; i++ )
if( max_len < LIS[i] )
max_len = LIS[i]; delete[] LIS;
delete[] vec; return max_len;
}
/**
@description: Longest Increasing Subsequence
@author: seiyagoo
@create: 2013.10.25
@modified: 2013.10.26
**/ // Binary search (note boundaries in the caller)
// A[] is ceilIndex in the caller
int CeilIndex(int A[], int l, int r, int key) {
int m; while( r - l > ) {
m = l + (r - l)/;
(A[m] >= key ? r : l) = m; // ternary expression returns an l-value
} return r;
} int LIS_2(int A[], int size) {
// boundary case: when array size is one
if( == size ) return ; int *tailTable = new int[size];
vector<int> *vec = new vector<int>[size];
int len; // always points empty slot //memset(tailTable, INT_MAX, sizeof(tailTable[0])*size); @bug for(int i = ; i < size; i++)
tailTable[i] = INT_MAX; tailTable[] = A[]; //tailTable[0] store the smallest value
vec[].push_back(A[]); len = ;
for( int i = ; i < size; i++ ) {
if( A[i] < tailTable[] ) { //case 1: new smallest value
tailTable[] = A[i]; /*discard and create*/
vec[].clear();
vec[].push_back(A[i]);
}
else if( A[i] > tailTable[len-] ) { //case 2: A[i] wants to extend largest subsequence
tailTable[len++] = A[i]; /*clone and extend*/
vec[len-] = vec[len-];
vec[len-].push_back(A[i]);
}
else { //case 3: A[i] wants to be current end candidate of an existing subsequence, It will replace ceil value in tailTable
int ceilIndex = CeilIndex(tailTable, -, len-, A[i]);
tailTable[ceilIndex] = A[i]; /*discard, clone and extend*/
vec[ceilIndex].clear();
vec[ceilIndex] = vec[ceilIndex-];
vec[ceilIndex].push_back(A[i]);
} /*Printf all the active lists*/
vector<int>::iterator it;
cout<<left;
cout<<"A["<<i<<"] = "<<A[i]<<endl<<endl;
cout<<"active lists:"<<endl;
for(int i=; i<len; i++){
for(it = vec[i].begin(); it!=vec[i].end(); it++)
cout<<*it<<" ";
cout<<endl;
} /*Printf end elements of all the active lists*/
cout<<endl<<"end elements array:"<<endl;
for(int i = ; i < size; i++)
if(tailTable[i] != INT_MAX)
cout<<tailTable[i]<<" ";
cout<<endl;
cout<<"-------------------------"<<endl;
} delete[] tailTable;
delete[] vec; return len;
}
五、运行结果
example:





Longest Increasing Subsequences(最长递增子序列)的两种DP实现的更多相关文章
- leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence
Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- [leetcode]300. Longest Increasing Subsequence最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- poj 2533 Longest Ordered Subsequence 最长递增子序列
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...
- [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]
题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...
- [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
随机推荐
- 【hihocoder 1122】二分图二•二分图最大匹配之匈牙利算法
[Link]:https://hihocoder.com/problemset/problem/1122 [Description] [Solution] 二分图匹配,匈牙利算法模板题; 这里我先把染 ...
- 查看oracle数据库的启动时间
Oracle的sys用户下有个视图v_$instance,该视图只有一行数据.通过SQL语名可查询其内容: select * from sys.v_$instance 此视图可查看很多东西,如实例名, ...
- UICollectionView 集合视图 的使用
直接上代码: // // RootViewController.m // // #import "RootViewController.h" #import "Colle ...
- 结构体类型重声明导致的bug一个
bug前提条件 当模块比較多.头文件较多,某个结构体类型会在当前模块中又一次声明进而引用其成员,而不直接包括其它模块的头文件. 这种优点是不引入不须要的类型声明到此模块.头文件包括的交叉:坏处是,添加 ...
- Leetcode:signal_number_ii
一. 题目 给一个数组,当中仅仅有一个数出现一次.其它的数都出现3次,请找出这个数.要求时间复杂度是O(n).空间复杂度O(1). 二. 分析 第一次遇见这种题,真心没思路-.前面的s ...
- Leetcode47: Palindrome Linked List
Given a singly linked list, determine if it is a palindrome. 推断一个链表是不是回文的,一个比較简单的办法是把链表每一个结点的值存在vect ...
- HDU 5188 zhx and contest(带限制条件的 01背包)
Problem Description As one of the most powerful brushes in the world, zhx usually takes part in all ...
- [NowCoder]牛客OI周赛3
A.地斗主 题意:\(4\times N\) 的地板,在上面铺 \(1\times 2\) 和 \(2\times 1\) 的地砖,求铺满方案数, \(N\le 10^9\) 原题..先把一列的状态压 ...
- asp.net 查询sql数据表的网页模板
最近因为工作需求,要制作一个网页模板,主要是用于快速开发,可以查询Sql数据表信息的模板, 昨天做好了,这个只是一个Demo,但是功能已经齐全了, 开发新的网站时,需要新增一个xml,复制粘贴网页的前 ...
- 应该知道的30个jQuery代码开发技巧
1. 创建一个嵌套的过滤器 .filter(":not(:has(.selected))") //去掉所有不包含class为.selected的元素 2. 重用你的元素查询 var ...