0.简介

  TopN算法是一个经典的算法,由于每个map都只是实现了本地的TopN算法,而假设map有M个,在归约的阶段只有M x N个,这个结果是可以接受的并不会造成性能瓶颈。

  这个TopN算法在map阶段将使用TreeMap来实现排序,以到达可伸缩的目的。

  当然算法有两种,一种是唯一键,就是说key的类型是唯一的(是指在比较的实际阶段),比如本篇就是唯一键的TopN实现;

  另一种就是非唯一键,比如key值可能会有A、B、C三种,然后分别对他们求TopN,当然,我们假设数据是混在一起的,非唯一键方面的内容,将会写到另一篇博客上。

  进入正题

一、输入、期望输出、思路。

由于是唯一键实际上与排序有关的只是value部分,我们大可以简单点,输入数据为一列数字好了。

TopN.txt内容如下:

20 78 56 45 23 15 12 35 79 68 98 63 111 222 333 444 555

但我们设置N=10时,期望输出为:

555
444
333
222
111
98
79
78
68
63

思路嘛,在简介部分已经说的很清楚了,没必要再赘述了,直接上代码:

2.用Java编写MapReduce程序实现TopN:

为了能够真正意义上的称为TopN,这里在context里设置了N的值。所以在输入参数的时候也许相应的增加!

package TopN;

import java.io.IOException;
import java.util.StringTokenizer;
import java.util.TreeMap; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TopN {
public static class TopTenMapper extends
Mapper<Object, Text, NullWritable, IntWritable> {
private TreeMap<Integer, String> repToRecordMap = new TreeMap<Integer, String>(); public void map(Object key, Text value, Context context) {
int N = 10; //默认为Top10
N = Integer.parseInt(context.getConfiguration().get("N"));
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
repToRecordMap.put(Integer.parseInt(itr.nextToken()), " ");
if (repToRecordMap.size() > N) {
repToRecordMap.remove(repToRecordMap.firstKey());
}
}
} protected void cleanup(Context context) {
for (Integer i : repToRecordMap.keySet()) {
try {
context.write(NullWritable.get(), new IntWritable(i));
} catch (Exception e) {
e.printStackTrace();
}
}
}
} public static class TopTenReducer extends
Reducer<NullWritable, IntWritable, NullWritable, IntWritable> {
private TreeMap<Integer, String> repToRecordMap = new TreeMap<Integer, String>(); public void reduce(NullWritable key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int N = 10; //默认为Top10
N = Integer.parseInt(context.getConfiguration().get("N"));
for (IntWritable value : values) {
repToRecordMap.put(value.get(), " ");
if (repToRecordMap.size() > N) {
repToRecordMap.remove(repToRecordMap.firstKey());
}
}
for (Integer i : repToRecordMap.descendingMap().keySet()) {
context.write(NullWritable.get(), new IntWritable(i));
}
} } public static void main(String[] args) throws Exception {
if (args.length != 3) {
throw new IllegalArgumentException(
"!!!!!!!!!!!!!! Usage!!!!!!!!!!!!!!: hadoop jar <jar-name> "
+ "TopN.TopN "
+ "<the value of N>"
+ "<input-path> "
+ "<output-path>");
}
Configuration conf = new Configuration();
conf.set("N", args[0]);
Job job = Job.getInstance(conf, "TopN");
job.setJobName("TopN");
Path inputPath = new Path(args[1]);
Path outputPath = new Path(args[2]);
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
job.setJarByClass(TopN.class);
job.setMapperClass(TopTenMapper.class);
job.setReducerClass(TopTenReducer.class);
job.setNumReduceTasks(1); job.setMapOutputKeyClass(NullWritable.class);// map阶段的输出的key
job.setMapOutputValueClass(IntWritable.class);// map阶段的输出的value job.setOutputKeyClass(NullWritable.class);// reduce阶段的输出的key
job.setOutputValueClass(IntWritable.class);// reduce阶段的输出的value System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

3.用Scala写Spark程序实现TopN:

依然简洁的代码:

package spark
import org.apache.spark.{ SparkContext, SparkConf }
import org.apache.spark.rdd.RDD.rddToOrderedRDDFunctions
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
object TopN {
def main(args: Array[String]) {
var N = 10 //这里指定N的值
val conf = new SparkConf().setAppName(" TopN ")
.setMaster("local")
var sc = new SparkContext(conf)
sc.setLogLevel("Warn")
val file = sc.textFile("e:\\TopN.txt")
val rdd = file.flatMap(_.split(" ")).map(x => (x.toInt, null))
.sortByKey(false).map(_._1).take(N)
.foreach { println }
}
}

分别使用Hadoop和Spark实现TopN(1)——唯一键的更多相关文章

  1. TopN问题(分别使用Hadoop和Spark实现)

    简介 TopN算法是一个经典的算法,由于每个map都只是实现了本地的TopN算法,而假设map有M个,在归约的阶段只有M x N个,这个结果是可以接受的并不会造成性能瓶颈. 这个TopN算法在map阶 ...

  2. Ubuntu14.04或16.04下Hadoop及Spark的开发配置

    对于Hadoop和Spark的开发,最常用的还是Eclipse以及Intellij IDEA. 其中,Eclipse是免费开源的,基于Eclipse集成更多框架配置的还有MyEclipse.Intel ...

  3. hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析

    hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析 Spark是一种快速.通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集 ...

  4. Hadoop与Spark比较

    先看这篇文章:http://www.huochai.mobi/p/d/3967708/?share_tid=86bc0ba46c64&fmid=0 直接比较Hadoop和Spark有难度,因为 ...

  5. 2分钟读懂Hadoop和Spark的异同

    谈到大数据框架,现在最火的就是Hadoop和Spark,但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,倒底现在业界都在使用哪种技术?二者间究竟有哪些异同?它们各自解决了哪些问题? ...

  6. 在MacOs上配置Hadoop和Spark环境

    在MacOs上配置hadoop和spark环境 Setting up Hadoop with Spark on MacOs Instructions 准备环境 如果没有brew,先google怎样安装 ...

  7. 成都大数据Hadoop与Spark技术培训班

    成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师 ...

  8. bigdata之hadoop and spark

    目前正在学习Hadoop和spark之类的东西,一个月把Hadoop的基础东西过了一遍,但是感觉好动都没跟上老师的课程,哪位前辈了解这方面的东西希望给指点迷津.接下来我们还要学习spark和nosql ...

  9. PageRank在Hadoop和spark下的实现以及对比

    关于PageRank的地位,不必多说. 主要思想:对于每个网页,用户都有可能点击网页上的某个链接,例如 A:B,C,D B:A,D C:AD:B,C 由这个我们可以得到网页的转移矩阵      A   ...

随机推荐

  1. NGINX+PHP-FPM7 FastCGI sent in stderr: “Primary script unknown”

    https://www.cnblogs.com/hjqjk/p/5651275.html 一开始是Nginx打开网页显示一直是拒绝访问.查看nginx日志是报错显示我的题目,然后就各种搜索解决啊! 百 ...

  2. Fiddler构造请求

    Fiddler工具是一个http协议调试代理工具,它可以帮助程序员测试或调试程序,辅助web开发. Fiddler工具可以发送向服务端发送特定的HTTP请求以及接受服务器回应的请求和数据,是web调试 ...

  3. Python3:numpy模块中的argsort()函数

    Python3:numpy模块中的argsort()函数   argsort函数是Numpy模块中的函数: >>> import numpy >>> help(nu ...

  4. 几个加固云服务器的方法(VPS版)

    前不久我的月供hide.me账号终于永远沉睡了,平时也就不过去油管看些养猫视频也能被盯上--迫于学业和娱乐的重担(),我决定搭建一个VPS来解决这种麻烦. 方法:自行选购VPS咯,不管是土豪去买AWS ...

  5. 爬虫系列(九) xpath的基本使用

    一.xpath 简介 究竟什么是 xpath 呢?简单来说,xpath 就是一种在 XML 文档中查找信息的语言 而 XML 文档就是由一系列节点构成的树,例如,下面是一份简单的 XML 文档: &l ...

  6. MySQL下做Master/Slave同步,延迟太大怎么办?

    slave的延迟是比较常见的,如果短暂的延迟后还能追上,一般就能接受了.   用innodb不是坏事,会减少一些slave中止的情况.如果是myisam的表,insert update delete操 ...

  7. noip模拟赛 同余方程组

    分析:这道题一个一个枚举都能有70分...... 前60分可以用中国剩余定理搞一搞.然而并没有枚举分数高......考虑怎么省去不必要的枚举,每次跳都只跳a的倍数,这样对前面的式子没有影响,为了使得这 ...

  8. Oracle数据库点滴

    分页查询: SELECT * FROM (SELECT A.*, ROWNUM RN FROM (SELECT * FROM TABLE_NAME) A WHERE ROWNUM <= 40)W ...

  9. ZooKeeper动态增加Server(动态增加节点)的研究(待实践)

    说明:是动态增加Server,不是动态增加连接到ZK Server的Client. 场景如下(转自外文): 1.在t=t_1->[peer-1(Leader),peer-2],peer-1是主节 ...

  10. Mac下使用OpenMP

    Mac下使用OpenMP,修改Build Options 下面的compiler for c/c++/objective-C 为 LLVM GCC 4.2 - Language 则可以找到Enable ...