题目来源: Ural 1302
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
 
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
Output
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
Input示例
8
2
5
6
3
18
7
11
19
Output示例
2
2
6
思路:用一个前缀和mod n 一下就可以求出来了。
解释:由于 % n ,所以最后形成的数的范围一定是0到n-1,当其等于0时,那这个前缀和就是我们所要求的。当他没有等于0的情况时那就会出现n-1个数放到n个容器中的情况,所以一定有两个是相同的,那这段区间即为所求,所以不会出现无解的情况。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long int n,a[],b[],c[];
int main(){
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
c[i]=(a[i]+c[i-])%n;
if(c[i]==){
cout<<i<<endl;
for(int j=;j<=i;j++)
cout<<a[j]<<endl;
return ;
}
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(c[i]==c[j]){
cout<<j-i<<endl;
for(int k=i+;k<=j;k++)
cout<<a[k]<<endl;
return ;
}
}
}
cout<<"No Solution";
}

1103 N的倍数的更多相关文章

  1. 51nod 1103 N的倍数(抽屉原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...

  2. 51nod 1103 N的倍数

    1103 N的倍数   一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. 例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8, ...

  3. 51nod 1103 N的倍数 (鸽巢原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...

  4. 51nod 1103 N的倍数 思路:抽屉原理+前缀和

    题目: 这是一道很神奇的题目,做法非常巧妙.巧妙在题目要求n个数字,而且正好要求和为n的倍数. 思路:用sum[i]表示前i个数字的和%n.得到sum[ 1-N ]共N个数字. N个数字对N取模,每个 ...

  5. AC日记——N的倍数 51nod 1103

    1103 N的倍数 思路: 先计算出前缀和: 然后都%n: 因为有n个数,所以如果没有sum[i]%n==0的化,一定有两个取模后的sum相等: 输出两个sum中间的数就好: 来,上代码: #incl ...

  6. 51nod 1103:N的倍数 抽屉原理

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...

  7. 51nod-1103-抽屉原理

    1103 N的倍数  题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得 ...

  8. Codeforces 1103 C. Johnny Solving

    Codeforces 1103 C. Johnny Solving 题目大意: 有一张 \(n\) 个点 \(m\) 条边的简单无向图,每个点的度数至少为 \(3\) ,你需要构造出两种情况之一 一条 ...

  9. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

随机推荐

  1. DNS隐蔽通道 是可以通过dig 子域名来追踪其真实IP的

    比如a.friendskaka.com 是我的外发子域名,那么可以按照下面两个命令来追踪IP: bonelee@bonelee-VirtualBox:~/桌面$ dig auth.a.friendsk ...

  2. [NOIP 2016] 蚯蚓

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4721 [算法] 首先,我们可以维护一个堆,堆中存放蚯蚓的长度,由于除当前蚯蚓其他的蚯 ...

  3. 杂项-人物:Alan cooper

    ylbtech-杂项-人物:Alan cooper Alan Cooper ,“VB之父”“交互设计之父”,荣获视窗先锋奖(Microsoft Windows Pioneer)和软件梦幻奖(Softw ...

  4. 原生JS---2

    js中的程序控制语句 常见的程序有三种执行结构: 1. 顺序结构 2. 分支结构 3. 循环结构 顺序结构:程序从第一行开始执行,按顺序执行到最后一行 分支结构:就像一条岔路口,必须选择且只能选择其中 ...

  5. AOP实现参数的判空问题

    不想每次都去判断必传的参数是否为空,写代码太繁琐了,正好最近用了AOP实现权限控制,依葫芦画瓢,现在用它实现参数的判空,至于AOP的原理之类,自己百度了解一下吧 1. NullDisable注解 @D ...

  6. xml转换成数组array

    直接上代码,成功转换 if($data){ //返回来的是xml格式需要转换成数组再提取值,用来做更新 $startnum = strpos($data,"<xml>" ...

  7. log4net实用配置代码

    log4net实用配置代码 <?xml version="1.0" encoding="utf-8" ?> <configuration> ...

  8. 【DP、线段树优化】琪露诺

    跟去年(2017)PJ第四题几乎是一样的?/吐血 DP方程可以很简单的推出来,f[i]=max{f[k]}+a[i] 然而这样做是O(n^2)的 看一下数据,200000的话要不nlogn 要不n 由 ...

  9. windows phone控件

    常用控件: 包括: Button控件.CheckBox控件.HyperlinkButton控件.Iamege控件.ListBox控件.PasswordBox控件.ProgressBar控件.Radio ...

  10. 复习HTML+CSS(8)

    n  普通框架 框架技术:将一个浏览器划分成若干个小窗口,每个小窗口显示一个独立的网页. 框架集合框架页 u  框架集<frameset>:主要用来划分窗口的. u  框架页<fra ...