Time Limit: 1 second

Memory Limit: 128 MB

【问题描述】

广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。

【输入格式】

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

【输出格式】

输出包含一行一个整数,即an除以m的余数。

【数据规模】

Sample Input1

1 1 1 1 10 7

Sample Output1

6

【样例说明】

数列第10项是55,除以7的余数为6。
【题解】
那个an到an-k的关系你可以代入一个k=1来验证。
然后ci,di都可以迭代出来。
c1=p;
d1=q;
最后得到c29999和d2999.
这样我们可以不断的缩减n的规模。即如果30001就直接将f[30001]存在f[1]中。

【代码】
#include <cstdio>

__int64 p, q, a1, a2, n, m;
__int64 f[40000]; int main()
{
scanf("%I64d%I64d%I64d%I64d%I64d%I64d", &p, &q, &a1, &a2, &n, &m); //输入数据。直接输入64位的就可以了。
f[1] = a1 % m;
f[2] = a2 % m;
f[3] = (p*f[2] + q*f[1]) % m;//先推出f[1],f[2],f[3]。
__int64 c, d;
c = p;
d = q;
for (int i = 2; i <= 29999; i++)//进行迭代 得出c29999和d29999
{
__int64 tempc, tempd;
tempc = (p*c + d)%m;
tempd = (q*c) %m;
c = tempc;
d = tempd;
}
while (n > 30000)//根据得到的东西不断地缩减n的规模。
{
n -= 30000;
f[1] = (c*f[2] + d*f[1]) %m;
f[2] = (c*f[3] + d*f[2]) % m;//可以看到f[1],f[2],f[3]之前都已经取得了
f[3] = (p*f[2] + q*f[1]) % m;//然后得到f[3]就可以了。
}
for (int i = 4; i <= n; i++)//剩下的已经小于30000了。可以通过迭代直接得出。(不会超时了)
f[i] = (p*f[i - 1] + q*f[i - 2]) % m;
printf("%I64d", f[n]);//最后直接输出答案。
return 0;
}



【u021】广义斐波那契数列的更多相关文章

  1. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  2. 矩阵乘法快速幂 codevs 1574 广义斐波那契数列

    codevs 1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 广义的斐波那契数列是指形如 ...

  3. HDU 5451 广义斐波那契数列

    这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...

  4. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  5. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  6. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  7. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  8. codevs1574广义斐波那契数列

    1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond     题目描述 Description 广义的斐波那契数列是指形如an=p* ...

  9. 「Luogu 1349」广义斐波那契数列

    更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...

  10. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

随机推荐

  1. JavaScript学习总结(2)——JavaScript数据类型判断

    最近做项目中遇到了一些关于javascript数据类型的判断处理,上网找了一下资料,并且亲自验证了各种数据类型的判断,在此做一个总结吧! 一.JS中的数据类型  1.数值型(Number):包括整数. ...

  2. Android系统如何管理自己内存的?

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 机缘巧合写下这篇博客,作为个人工作经验的总结,不足之处,随后补上. 安卓是基于Linux2.6内核的 ...

  3. get_browser()用法

    get_browser()用法 get_browser()函数是用来分析USER_AGENT的,它的执行方法是自动获取客户端的USER_AGENT,然后调用browscap.ini库进行分析得到结果 ...

  4. 1. 初识ZooKeeper。

    转自:https://blog.csdn.net/en_joker/article/details/78661466 Apache ZooKeeper是由 Apache Hadoop的子项目发展而来, ...

  5. 关于hadoop hdfs里文件为啥上一级大小是0,进去又有大小问题解释?

    问题 好像跟平时的理解不一样,外边是0,进去就是有大小了? 答:hdfs具体文件是针对具体文件的,不是文件目录.    文件夹大小为0,不是里面所有内容为0.

  6. spring-data-redis 使用

    以前使用过Jedis,后面因项目需要使用spring-data-redis,设置一个键值及其过期时间后怎么都不对. 源代码: redisTemplate.opsForValue().set(key, ...

  7. C#操作session的类实例

    本文实例讲述了C#操作session的类.分享给大家供大家参考.具体分析如下: 这个C#类对session操作进行了再次封装,可以大大简化session的常用操作,同时这个类可以将session值设置 ...

  8. mysql数据库忘记密码时如何修改(转)

    当我们忘记mysql数据库密码时我们就无法正常进入数据库,也就无法修改密码,那么这时该怎么修改密码呢,这里教大家一个简单常用修改密码的方式. (如果图简单快速修改密码的话,直接跳过查询步骤,依照图上执 ...

  9. Java Web学习总结(12)——使用Session防止表单重复提交

    在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...

  10. 三星Galaxy Tab S2上市,压制苹果之心凸显

        平板市场正在迎来史上最为关键的一次PK,众所周知,平板市场的苹果和三星一直是行业的领头羊,而在激烈的竞争中.三星平板似乎后劲更足.众多性能优异的产品频频推出.平板之王的称谓呼之欲出. 去年三星 ...