建议:
学习ac算法最好的途径是看论文pdf_Efficient_String_Matching_An_Aid_to_Biblio

一、一般的搜索算法

keyword: { he, she, his, her }
text: "ushers"

  • 总结:
    如上图所示,一般的搜索过程需要每个关键字依次搜索,这是时间复杂度最高的算法。
    当然,可以把每个关键字搜索过程优化为 KMP 或者 BM 算法,但仍然需要每个关键字都搜索一遍。
    KMP、BM是单模匹配算法,使用多模匹配算法 AC 即可优雅解决此问题。

二、AC 算法的搜索过程

1.三个函数

  • goto 函数

  • fail 函数

  • output 函数

    省略了 output(state) = empty 的情况

2.算法一 - 搜索过程

keyword: { he, she, his, her }
text: "ushers"

  • 总结:
    可以看到使用 AC 算法的搜索过程仅遍历了一次 text ,就找到了所有匹配 keyword。
    搜索过程从状态0开始,通过 goto() 函数进行状态转换,每次转换状态都会执行 output() 函数,如果返回值不为空,说明匹配到关键字。goto() 函数返回 fail 的情况,执行 fail() 函数进行状态转换。

g(0,x) 没有失败的情况,至少会跳转到状态0
fail(x) 也没有失败的情况,至少会跳转到状态0
fail(x) 还存在优化的余地,假设 keyword 中没有 hers ,则这次 f(5) 就一次无用的跳转。

算法一:

三、生成 goto() fail() output() 函数的过程

1.算法二 - 生成 goto() 函数 和 不完整的 output() 函数

构造 goto() 函数的过程就是生成 goto() 前缀树的过程。从仅有一个点(状态为0)的前缀树开始,逐个添加关键字到前缀树即可。

  • 1.添加 "he" 关键字

  • 2.添加 "she" 关键字
    ]

  • 3.添加 "his" 关键字

  • 4.添加 "hers" 关键字

  • 5.起点(状态0)作特殊处理,使 g(0, x) 永远不会返回 fail,x表示任意字符。

  • 总结:
    output() 函数目前还不完整,比如 output(5) 应该为 {she, he } 才能完整匹配所有关键字。所以还需要另外一个算法完成 output() 函数。

算法二

2.算法三 - 生成 fail() 函数 并补充 output() 函数

注:
为表述方便,此处虚拟了 state() 函数。
例如:state("he")表示字符串"he"在goto() 前缀树中所表示的状态值,并非真实存在的函数。
长度为1的字符串,其 fail() 返回值肯定是0。

  • 情况1:2个字符串的 fail() 返回值

  • 情况2:3个字符串的 fail() 返回值

  • 情况3:4个字符串的 fail() 返回值

  • 情况4:4个字符串的 fail() 返回值。
    这里与情况3有一点区别,字符串 "ashe" 的最长子串 "she" 并不是关键字,所以我们认为 "he" 是 "ashe" 的最长子串,所以字符串 "ashe" 的 fail() 返回值是 "he" 的状态值。

  • 总结:
    以上4种情况,间接表示了 fail() 函数生成过程,尤其是伪代码中 while g(staet, a) = fail do state <- f(state)的含义,即找到一个字符串的状态值,此字符串是当前关键词的最长后缀,同时又是其他关键词的前缀。然后 fail(s) 就等于我们找到的这个状态值。

算法三:

附件列表

AC多模式匹配算法的更多相关文章

  1. 彻底理解AC多模式匹配算法

    (本文尤其适合遍览网上的讲解而仍百思不得姐的同学) 一.原理 AC自动机首先将模式组记录为Trie字典树的形式,以节点表示不同状态,边上标以字母表中的字符,表示状态的转移.根节点状态记为0状态,表示起 ...

  2. [转] 字符串模式匹配算法——BM、Horspool、Sunday、KMP、KR、AC算法一网打尽

    字符串模式匹配算法——BM.Horspool.Sunday.KMP.KR.AC算法一网打尽 转载自:http://dsqiu.iteye.com/blog/1700312 本文内容框架: §1 Boy ...

  3. 字符串模式匹配算法——BM、Horspool、Sunday、KMP、KR、AC算法一网打尽

    字符串模式匹配算法——BM.Horspool.Sunday.KMP.KR.AC算法一网打尽 本文内容框架: §1 Boyer-Moore算法 §2 Horspool算法 §3 Sunday算法 §4 ...

  4. 字符串模式匹配算法——BM、Horspool、Sunday、KMP、KR、AC算法

    ref : https://dsqiu.iteye.com/blog/1700312 本文内容框架: §1 Boyer-Moore算法 §2 Horspool算法 §3 Sunday算法 §4 KMP ...

  5. Java数据结构之字符串模式匹配算法---Brute-Force算法

    模式匹配 在字符串匹配问题中,我们期待察看源串 " S串 " 中是否含有目标串 " 串T " (也叫模式串).其中 串S被称为主串,串T被称为子串. 1.如果在 ...

  6. 《数据结构》之串的模式匹配算法——KMP算法

    //串的模式匹配算法 //KMP算法,时间复杂度为O(n+m) #include <iostream> #include <string> #include <cstri ...

  7. KMP模式匹配算法

    KMP模式匹配算法 相信很多人对于这个还有点不了解,或者说是不懂,下面,通过一道题,来解决软考中的这个问题! 正题: aaabaaa,其next函数值为多少? 对于这个问题,我们应该怎么做呢? 1.整 ...

  8. 线性表-串:KMP模式匹配算法

    一.简单模式匹配算法(略,逐字符比较即可) 二.KMP模式匹配算法 next数组:j为字符序号,从1开始. (1)当j=1时,next=0: (2)当存在前缀=后缀情况,next=相同字符数+1: ( ...

  9. 数据结构- 串的模式匹配算法:BF和 KMP算法

      数据结构- 串的模式匹配算法:BF和 KMP算法  Brute-Force算法的思想 1.BF(Brute-Force)算法 Brute-Force算法的基本思想是: 1) 从目标串s 的第一个字 ...

随机推荐

  1. Flex 容器基本概念

    申明文章出处:http://www.adobe.com/cn/devnet/flex/articles/flex-containers-tips.html Flex 4 容器可以提供一套默认的布局:B ...

  2. 深入理解Java内存模型(三)——顺序一致性

    数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.java内存模型规范对数据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码 ...

  3. Ueditor上传图片到本地改造到上传图片到云存储

    作为新手说多了都是泪啊!我特别想记录一下作为菜鸟时的坑.看看以后是否会看着笑出来. 为什么要改到云存储上就不说了.好处多多. 视频教程上使用的又拍云同时也提到了七牛云.下来我自己也查了下.又拍云是试用 ...

  4. 很实用的js限制不让输入其他字符,只让输入数字和 js生成UUID

    onkeyup="this.value=this.value.replace(/\D/g,'')" js生产UUID var createUUID = (function (uui ...

  5. vc 6.0 连接数据库

    在mysql的文档(C:\Program Files\MySQL\MySQL Server 5.5\lib)里面找到libmysql.dll和libmysql.lib 两个文件,将他们移到 工程文件下 ...

  6. 设备模型之kobject,kset及其关系

    Linux2.6以后的设备驱动,都是在设备模型的基础上构建的,因此,要编写linux下的设备驱动程序,不论是usb设备,pci设备等,都需要了解设备模型. 设备模型的基础结构体主要是kobject,k ...

  7. NDK(1)配置ndk,含eclipse,Android Studio1.5.1

    现在的ndk配置已经非常简单,如果看到要cygwin的请关闭. 1,Eclipse 添加ndk linux,mac ,windows 相似, a.下载 ndk并解压, b.在eclipse的andro ...

  8. cut命令如何截取以空格隔开的字段

    你的文件分隔符恐怕不止一个空格(一定的who生成的): 用awk: awk '{print $2}' file 一定要用cut的话: cat file|tr -s ' '|cut -d' ' -f2 ...

  9. ACM - ICPC World Finals 2013 I Pirate Chest

    原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 问题描述 海盗Dick受够了在公海上厮杀.抢劫 ...

  10. UVa 10635 (LIS+二分) Prince and Princess

    题目的本意是求LCS,但由于每个序列的元素各不相同,所以将A序列重新编号{1,2,,,p+1},将B序列重新编号,分别为B中的元素在A中对应出现的位置(没有的话就是0). 在样例中就是A = {1 7 ...