判断是否为BST
递归的方法,用返回false的方法。中序遍历的想法很好,空间浪费。遍历的过程记录上一次的值进行比较。
//题目描述
//
//请实现一个函数,检查一棵二叉树是否为二叉查找树。
//给定树的根结点指针TreeNode* root,请返回一个bool,代表该树是否为二叉查找树。
#include<iostream>
using namespace std;
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
class Checker {
public:
//先想到的是返回true的情况, //改为return true有错误。
bool checkBST(TreeNode* root) {
// write code here
if (root == NULL) return true;
if (root->left && root->left->val > root->val)
return false;
if (root->left && root->left->right && root->left->right->val>root->val)
return false;
if (root->right && root->right->val < root->val)
return false;
if (root->right&&root->right->left&&root->right->left->val < root->val)
return false;
return checkBST(root->left) && checkBST(root->right);
}
};
//
//《程序员面试金典》 代码详解:http ://blog.csdn.net/zdplife/article/category/5799903
//题目分析:
//<方法1>
//首先我们想到的是二叉树中序遍历后的结果是有序的,根据这个结果,我们可以中序遍历二叉树,并把遍历结果存放在一个数组里面,然后判断这个数组大小是否是有序数组,如果是有序数组,则是二叉查找树,否则就不是。
//这个方法的时间复杂度是O(N),但是空间复杂度比较高,需要浪费O(N)的存储空间。
//<方法2>
//其实在<方法1>的基础上,我们可以在中序遍历的同时,比较大小,每次记录下上次遍历过的元素的值,如果当前元素的值大于上次遍历元素的值,则接着遍历,否则返回false,因为这个记录是一个址传递,所以需要用到引用形参进行传递。
//这个方法的时间复杂度与<方法1>的时间复杂度相同,只是空间复杂度只需要一个元素O(1)。
class Checker {
public:
bool checkBST(TreeNode* root) {
// write code here
int min = INT_MIN;
return inOrderCompare(root, min);
}
bool inOrderCompare(TreeNode* root, int &last)
{
if (root == NULL)
return true;
if (!inOrderCompare(root->left, last))
return false;
if (root->val < last)
return false;
last = root->val;
if (!inOrderCompare(root->right, last))
return false;
return true;
}
};
//<方法3>
//可以根据二叉查找树的定义来判断,二叉树的定义,所有左子树的节点小于根节点,所有右子树的节点大于根节点,并且左右子树也是二叉查找树。所以在递归的过程中,我们只需要传递两个参数(当前根节点对应的二叉树的所有节点的最大值和最小值),
//同时不断的更新这两个参数,如果当前节点的值不在这两个数范围中,则直接返回false,否则接着递归便可。
//非递归遍历二叉树,然后判断结果是否递增
#include <stack>
#include <vector>
class Checker {
public:
bool checkBST(TreeNode* root) {
// write code here
stack<TreeNode*> s;
TreeNode *pNode = root;
vector<int> data;
while (pNode != NULL || !s.empty())
{
while (pNode != NULL)
{
s.push(pNode);
pNode = pNode->left;
}
if (!s.empty())
{
pNode = s.top();
data.push_back(pNode->val);
s.pop();
pNode = pNode->right;
}
}
; i < data.size() - ; i++)
{
])
return false;
}
return true;
}
};
//首先利用中序遍历排序,其次遍历检查排序序列是否递增,最后输出结果!
class Checker {
public:
vector<int> res;
bool checkBST(TreeNode* root) {
// write code here
if (root == NULL) return true;
bool flag = false;
inorder(root);
; i<res.size() - ; i++)
{
])
{
flag = true;
break;
}
}
if (flag)
return false;
else
return true;
}
void inorder(TreeNode* root){
if (root == NULL) return;
inorder(root->left);
res.push_back(root->val);
inorder(root->right);
}
};
判断是否为BST的更多相关文章
- [二叉树算法]关于判断是否为BST的算法
//判断是否为BST 搜索树==二叉排序树 1.递归知最大最小值.2.先中序判是否单调 bool IsValidBST(BTNode *p,int low,int high){ if(p==NULL) ...
- 判断二叉树是否BST
一.问题: 请实现一个函数,检查一棵二叉树是否为二叉查找树.给定树的根结点指针TreeNode* root,请返回一个bool,代表该树是否为二叉查找树. 二.思路: 解法一:从根节点开始遍历二叉树, ...
- [剑指offer] 二叉搜索树的后序遍历序列 (由1个后续遍历的数组判断它是不是BST)
①题目 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. ②思路 1.后续遍历的数组里,最后一个元素是根. 2 ...
- 算法——dfs 判断是否为BST
95. 验证二叉查找树 中文English 给定一个二叉树,判断它是否是合法的二叉查找树(BST) 一棵BST定义为: 节点的左子树中的值要严格小于该节点的值. 节点的右子树中的值要严格大于该节点的值 ...
- leetcode 98,判断二叉树为BST
方法一,记录子树的上界和下界,root的左子树一定小于root的值,root的右子树一定大于root的值,然后递归左子树和右子树 public class Solution { public bool ...
- 【PAT甲级】1043 Is It a Binary Search Tree (25 分)(判断是否为BST的先序遍历并输出后序遍历)
题意: 输入一个正整数N(<=1000),接下来输入N个点的序号.如果刚才输入的序列是一颗二叉搜索树或它的镜像(中心翻转180°)的先序遍历,那么输出YES并输出它的后序遍历,否则输出NO. t ...
- [Locked] Largest BST Subtree
Largest BST Subtree Given a binary tree, find the largest subtree which is a Binary Search Tree (BST ...
- 333. Largest BST Subtree
nlgn就不说了..说n的方法. 这个题做了好久. 一开始想到的是post-order traversal. 左右都是BST,然后自己也是BST,返还长度是左+右+自己(1). 左右其中一个不是,或者 ...
- 剑指Offer题解(Python版)
https://blog.csdn.net/tinkle181129/article/details/79326023# 二叉树的镜像 链表中环的入口结点 删除链表中重复的结点 从尾 ...
随机推荐
- Socket 通信原理(Android客户端和服务器以TCP&&UDP方式互通)
转载地址:http://blog.csdn.net/mad1989/article/details/9147661 ZERO.前言 有关通信原理内容是在网上或百科整理得到,代码部分为本人所写,如果不当 ...
- JAVA中的内部类使用总结
1) 内部类的优点是:内部类可以访问外部类的私有成员变量,而不需要new外部类的对象. 2) 内部类又分为:静态内部类.匿名内部类.局部内部类.成员内部类. 3) ...
- H5移动前端完美布局之padding
序上次的提到了H5移动前端完美布局之-margin百分比的使用margin-top(left,right,bottom)的百分比在移动页面布局中对上下左右距离的处理,攻下城外再攘城内,今天看看padd ...
- char和vchar
Varchar往往用来保存可变长度的字符串.简单的说,我们只是给其固定了一个最大值,然后系统会根据实际存储的数据量来分配合适的存储空间. 为此相比CHAR字符数据而言,其能够比固定长度类型占用更少的存 ...
- Oracle INV - SO line backorder API
--Sales Order Lines to backorder API--===================================--SET serveroutput on size ...
- apache 配置用户级目录
如果你只需要在用户目录下使用apache的话,还有一个最简单的方式,直接将 httpd.conf文件下的 DocumentRoot "/Library/WebServer/Documents ...
- Android实现自定义字体
介绍 最近在看开源项目的时候,发现里面涉及到了自定义字体,虽然自己目前还用不到,但是动手demo笔记记录一下还是有必要的,没准哪天需要到这个功能. 原理 1.其实实现起来非常简单,主要是用到了Type ...
- hdu2847(暴力)
去年看的一道题目,但是竟然傻傻的用dfs+循环链表去做. 简直傻到爆. 不过现在做这题还是想了好久而且还有好几次WA,其实这题还是很水的.直接暴力枚举就行了,枚举的前提是要算好复杂度, 可以知道的是 ...
- C++实现日期类(Date类)
#include<iostream>using namespace std;class Date{public: Date(int year = 1900, int month = ...
- 使用dev http client调试restful API开发
安装chrome 插件:dev http client, 使用VPN打开 google网站,