http://acm.hdu.edu.cn/showproblem.php?pid=4704

求(2^n)%mod的方法

#include <iostream>
#include <cstdio>
#include <cstring>
#include <set>
#include <vector>
#include <queue>
using namespace std ; //(2^n)%mod=(2^(n%(mod-1)))%mod const int mod= ; __int64 POW(int b)
{
__int64 res=,a= ;
while(b)
{
if(b&)res=(res*a)%mod ;
a=(a*a)%mod ;
b>>= ;
}
return res ;
} char s[] ; int main()
{
while(~scanf("%s",s))
{
int len=strlen(s) ;
__int64 n= ;
for(int i= ;i<len ;i++)
n=(n*+s[i]-'')%(mod-) ;
printf("%I64d\n",POW(n-)) ;
}
return ;
}

HDU 4704的更多相关文章

  1. HDU 4704 Sum (高精度+快速幂+费马小定理+二项式定理)

    Sum Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  2. HDU 4704 欧拉定理

    题目看了很久没看懂 就是给你数n,一种函数S(k),S(k)代表把数n拆成k个数的不同方案数,注意如n=3,S(2)是算2种的,最后让你求S(1~n)的和模1e9+7,n<=1e100000.那 ...

  3. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  4. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  5. hdu 4704(费马小定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4704 思路:一道整数划分题目,不难推出公式:2^(n-1),根据费马小定理:(2,MOD)互质,则2^ ...

  6. hdu 4704 Sum(组合,费马小定理,快速幂)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4704: 这个题很刁是不是,一点都不6,为什么数据范围要开这么大,把我吓哭了,我kao......说笑的, ...

  7. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  8. hdu 4704 Sum

    思路:对于给定的n,s(i)即将n分解为i个数的组合数,也就是在n-1个位置插入i-1个板即C(n-1,i-1); ∑S=2^(n-1); phi(1000000007)=1000000006; 对于 ...

  9. hdu 4704 Sum 费马小定理

    题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p)  然后可以推出来a^k % p = a^(k%(p-1) ...

随机推荐

  1. PMP 项目管理

    1.什么是项目管理   项目管理就是把各种知识,技能,工具,技术应用于项目活动,来满足项目的需求.这个是从技术方面来说的.其实在项目管理的技术 层面背后,还有理念层面的内容.学习项目管理,除了学习技术 ...

  2. 图形界面报错“已拒绝X11转移申请”的解决方法

    今天想通过本机给虚拟机起x-manager图形界面的时候报出 解决办法: 1.原来X11 forwarding依赖“xorg-x11-xauth”软件包,所以必须先安装“xorg-x11-xauth” ...

  3. HTTP 错误 500.22 - Internal Server Error 检测到在集成的托管管道模式下不适用的 ASP.NET 设置

    答案:在将WebDataHelper升级到VS2013是出现的这个错误,这个程序使用了URL重写的技术, 解决方法是:需要将重写的配置,迁移到system.webServer配置节中

  4. GUID vs INT Debate【转】

    http://blogs.msdn.com/b/sqlserverfaq/archive/2010/05/27/guid-vs-int-debate.aspx I recently read a bl ...

  5. Python Twisted介绍

    原文链接:http://www.aosabook.org/en/twisted.html 作者:Jessica McKellar Twisted是用Python实现的基于事件驱动的网络引擎框架.Twi ...

  6. 微软WTL模板库完整版安装(VS2010+windows7X64位环境下)分享

    一:简介 想必大家对于微软的MFC应该都比较熟悉.但是WTL可能很多人比较陌生吧.下面我就简单的说说这个库. 首先对这个库的做个简单的介绍吧. WTL 是 Windows Template Libra ...

  7. CCocos2Dx 一段遍历子节点的代码

    CCLog("Lein will hide account!CS_FAST_REGISTER_REQ"); <p> CCNode* child1 = (CCNode*) ...

  8. ZOJ 3646 Matrix Transformer 二分匹配,思路,经典 难度:2

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4836 因为要使对角线所有元素都是U,所以需要保证每行都有一个不同的列上有U,设 ...

  9. C#根据当前日期获取星期和阴历日期

    private string GetWeek(int dayOfWeek) { string returnWeek = ""; switch (dayOfWeek) { case ...

  10. 戴文的Linux内核专题:05配置内核(1)

    转自Linux中国 现在我们已经了解了内核,现在我们可以进入主要工作:配置并编译内核代码.配置内核代码并不会花费太长时间.配置工具会询问许多问题并且允许开发者配置内核的每个方面.如果你有不确定的问题或 ...