Warm up

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 90    Accepted Submission(s): 12

Problem Description
  N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels.
  If we can isolate some planets from others by breaking only one channel , the channel is called a bridge of the transportation system.
People don't like to be isolated. So they ask what's the minimal number of bridges they can have if they decide to build a new channel.
  Note that there could be more than one channel between two planets.
 
Input
  The input contains multiple cases.
  Each case starts with two positive integers N and M , indicating the number of planets and the number of channels.
  (2<=N<=200000, 1<=M<=1000000)
  Next M lines each contains two positive integers A and B, indicating a channel between planet A and B in the system. Planets are numbered by 1..N.
  A line with two integers '0' terminates the input.
 
Output
  For each case, output the minimal number of bridges after building a new channel in a line.
 
Sample Input
4 4
1 2
1 3
1 4
2 3
0 0
 
Sample Output
0
 
Source
 
Recommend
zhuyuanchen520
 

问加一条边,最少可以剩下几个桥。

先双连通分量缩点,形成一颗树,然后求树的直径,就是减少的桥。

本题要处理重边的情况。

如果本来就两条重边,不能算是桥。

还会爆栈,只能C++交,手动加栈了

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
using namespace std; const int MAXN = ;//点数
const int MAXM = ;//边数,因为是无向图,所以这个值要*2 struct Edge
{
int to,next;
bool cut;//是否是桥标记
bool cong;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
int Index,top;
int block;//边双连通块数
bool Instack[MAXN];
int bridge;//桥的数目 void addedge(int u,int v,bool pp)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut=false;
edge[tot].cong = pp;
head[u] = tot++;
} void Tarjan(int u,int pre,bool ff)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if(v == pre && (!ff))continue;
if( !DFN[v] )
{
Tarjan(v,u,edge[i].cong);
if( Low[u] > Low[v] )Low[u] = Low[v];
if(Low[v] > DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^].cut = true;
}
}
else if( Instack[v] && Low[u] > DFN[v] )
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
block++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
}
while( v!=u );
}
}
void init()
{
tot = ;
memset(head,-,sizeof(head));
} int du[MAXN];//缩点后形成树,每个点的度数
vector<int>vec[MAXN];
int dep[MAXN];
void dfs(int u)
{
for(int i = ;i < vec[u].size();i++)
{
int v = vec[u][i];
if(dep[v]!=-)continue;
dep[v]=dep[u]+;
dfs(v);
}
}
void solve(int n)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
Index = top = block = ;
Tarjan(,,false);
for(int i = ;i <= block;i++)
vec[i].clear();
for(int i = ;i <= n;i++)
for(int j = head[i];j != -;j = edge[j].next)
if(edge[j].cut)
{
vec[Belong[i]].push_back(Belong[edge[j].to]);
}
memset(dep,-,sizeof(dep));
dep[]=;
dfs();
int k = ;
for(int i = ;i <= block;i++)
if(dep[i]>dep[k])
k = i;
memset(dep,-,sizeof(dep));
dep[k]=;
dfs(k);
int ans = ;
for(int i = ;i <= block;i++)
ans = max(ans,dep[i]);
printf("%d\n",block--ans);
}
struct NN
{
int u,v;
}node[MAXM];
bool cmp(NN a,NN b)
{
if(a.u != b.u)return a.u<b.u;
else return a.v<b.v;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
int u,v;
while(scanf("%d%d",&n,&m)==)
{
if(n== && m==)break;
init();
for(int i = ;i < m;i++)
{
scanf("%d%d",&u,&v);
if(u==v)continue;
if(u>v)swap(u,v);
node[i].u = u;
node[i].v = v;
}
sort(node,node+m,cmp);
for(int i = ;i < m;i++)
{
if(i == || (node[i].u!=node[i-].u || node[i].v != node[i-].v))
{
if(i < m- && (node[i].u==node[i+].u && node[i].v == node[i+].v))
{
addedge(node[i].u,node[i].v,true);
addedge(node[i].v,node[i].u,true);
}
else
{
addedge(node[i].u,node[i].v,false);
addedge(node[i].v,node[i].u,false);
}
}
}
solve(n);
}
return ;
}

HDU 4612 Warm up(2013多校2 1002 双连通分量)的更多相关文章

  1. Hdu 4612 Warm up (双连通分支+树的直径)

    题目链接: Hdu 4612 Warm up 题目描述: 给一个无向连通图,问加上一条边后,桥的数目最少会有几个? 解题思路: 题目描述很清楚,题目也很裸,就是一眼看穿怎么做的,先求出来双连通分量,然 ...

  2. HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)

    Building Fence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)To ...

  3. 【HDU 4612 Warm up】BCC 树的直径

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4612 题意:一个包含n个节点m条边的无向连通图(无自环,可能有重边).求添加一条边后最少剩余的桥的数 ...

  4. HDU 4612——Warm up——————【边双连通分量、树的直径】

    Warm up Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  5. HDU 4705 Y (2013多校10,1010题,简单树形DP)

    Y Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submiss ...

  6. HDU 4704 Sum (2013多校10,1009题)

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  7. HDU 4699 Editor (2013多校10,1004题)

    Editor Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Su ...

  8. HDU 4696 Answers (2013多校10,1001题 )

    Answers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total S ...

  9. HDU 4690 EBCDIC (2013多校 1005题 胡搞题)

    EBCDIC Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total Su ...

随机推荐

  1. ACM - ICPC World Finals 2013 F Low Power

    原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 问题描述 有n个机器,每个机器有2个芯片,每个 ...

  2. Spring MVC文件下载

    方案一: // 文件下载 @RequestMapping(value = "/downloadFile") public ResponseEntity<byte[]> ...

  3. HR免费选人的网站乐跳网上线

    园子里有HR吗? 我们的免费选人的网站乐跳网(http://www.letiao.com)上线了, 免费选人在精英人才榜(http://www.letiao.com/talentwall) 有面试,奖 ...

  4. 多个MapReduce作业相互依赖时,使用JobControl进行管理

    要处理复杂关系的数据,一个工程里面绝对不止一个MapReduce作业,当有多个MapReduce作业时,       并且每个作业之间有依赖关系,所谓的依赖就是一个作业得到的结果是另外一个作业的输入, ...

  5. WebForm页面运行机制

    阅读目录 开始 WebForm前台与后台的关系及运行原理 前台页面 <% @ Page Language="C#" AutoEventWireup="true&qu ...

  6. XE7 - 升级及初步使用

    春节没抢到回家的票,正好有时间把Delphi2010升级到了XE7. 用了快一个月了,今天算是补记. 安装包用了lsuper大侠整理的lsuper.XE7.Update1.v10.1.拜谢!比较顺利的 ...

  7. 【英语】Bingo口语笔记(16) - 咬舌音和咬唇音的辨读

  8. Linux下ll命令与ls -l

    还大三Linux课的债. 1.ll命令用于显示当前文件下非隐藏文件的详情 查询结果分为7栏: 1)如' -rw-r--r--' 表示三种用户对该文件的不同权限: r:可读:w:可写:x:可执行 其中第 ...

  9. 树莓派 安装 php

    执行如下命令(注意红色字部分是关键!) sudo apt-get install apache2 php5 libapache2-mod-php5 然后把网页文件复制到 /usr/www 中即可 参考 ...

  10. web.xml文件的作用

    每个javaEE工程中都有web.xml文件,那么它的作用是什么呢?它是每个web.xml工程都必须的吗? 一个web中可以没有web.xml文件,也就是说,web.xml文件并不是web工程必须的. ...