AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2301

冬令营听了莫比乌斯,这就是宋老师上课讲的例题咯[今天来实现一下]

 #include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; inline int in(){
int x=;char ch=getchar();
while(ch>'' || ch<'') ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return x;
} const int maxn=; int mu[maxn],s[maxn];
int Prime[maxn],cnt;
bool no_prime[maxn]; void get_prime(){
int tmp;mu[]=;
for(int i=;i<maxn;i++){
if(!no_prime[i]) Prime[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt && ((tmp=Prime[j]*i)<maxn);j++){
no_prime[tmp]=true;
if(i%Prime[j]==){mu[tmp]=;break;}
mu[tmp]=-mu[i];
}
}
for(int i=;i<maxn;i++) s[i]=s[i-]+mu[i];
} //j表示在所有数x中n/x=n/i的最后一个
long long calcu(int n,int m){
long long sum=;
if(n>m) swap(n,m);
for(int i=,j=;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
sum+=(long long)(s[j]-s[i-])*(m/i)*(n/i);
}
return sum;
} int main(){
#ifndef ONLINE_JUDGE
freopen("2301.in","r",stdin);
freopen("2301.out","w",stdout);
#endif int T,a,b,c,d,k;
long long ans; get_prime();
T=in();
while(T--){
a=in(),b=in(),c=in(),d=in(),k=in();
ans=calcu(b/k,d/k)-calcu(b/k,(c-)/k)-calcu((a-)/k,d/k)+calcu((a-)/k,(c-)/k);
printf("%lld\n",ans);
} return ;
}

[感觉还是说一下怎么做吧...]不过建议大家还是找个ppt来看好啦[我没有图啊...]

首先将问题变成询问[i=1...n][j=1...m]中有多少gcd(i,j)==k的数

然后其实就是[i=1...n/k][j=1...m/k]中gcd(i,j)==1的数

然后设f(n,m,k)表示[i=1...n/k][j=1...m/k]中gcd(i,j)==1的个数

g(n,m,k)表示[i=1...n/k][j=1...m/k]中gcd(i,j)是1的倍数的个数 <- 小学生都知道这个等于(n/k)*(m/k)是吧

所以这一步直接由定义推来

然后莫比乌斯反演一下

然后再把g(n,m,k)的公式带一下

就是这个样子了...

然后发现有一大部分的数值是相同的,然后就可以看代码的分块了...

BZOJ 2301 Problem b的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. BZOJ 2301 Problem b(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2301 题意:每次给出a,b,c,d,K.求有多少数对(x,y)满足a<=x< ...

  3. BZOJ 2301 Problem B(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:给a,b,c,d,k,求gcd(x,y)==k的个数(a<=x<=b,c&l ...

  4. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  5. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  6. BZOJ 2301 Problem b (莫比乌斯反演+容斥)

    这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...

  7. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  8. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  9. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

随机推荐

  1. winform中嵌入Ppt、Word、Excel

    1.下载DsoFramer_KB311765_x86.exe 2.安装,默认路径安装C:\DsoFramer. 3.注册:开始菜单——>运行 输入:regsvr32 C:\DsoFramer\d ...

  2. GridView 鼠标经过时变色两种方法

    第一种: 新建一个js文件 并引用 <script src="jquery.js" type="text/javascript"></scri ...

  3. 别不拿里程碑当石头---------IT项目管理之项目计划(转)

    如果说做项目不需要计划,恐怕没人会认同.是否每个项目计划都起到了作用呢?却不尽然.知道要做计划,但不知道为什么做计划,如何做计划的还是大有人在.所以很多计划沦为依样画葫芦,成了摆设. IT项目计划的用 ...

  4. silverlight获取web的url参数

    1.网址(如:http://localhost:8081/index.aspx?name=123) 2.获取name=123的信息 3.IDictionary<string,string> ...

  5. cmd中无法运行svn命令

    Svn 不是内部或外部命令,也不是可运行的程序 解决方法: 增加“svn安装目录/bin”,例如:C:\Program Files\TortoiseSVN\bin

  6. 没有Where条件下group by走索引

    C:\Users\Administrator>sqlplus /nolog SQL :: Copyright (c) , , Oracle. All rights reserved. SQL&g ...

  7. STM32F0xx_TIM输出PWM配置详细过程

    前言 前面我说过STM32的定时器功能很强大,今天就来总结一下它的另外一个“强大”功能:TIM的比较输出功能,输出可调PWM波形.直接调用函数接口“TIM2_CH1_PWM(uint32_t Freq ...

  8. XAML(3) - 附带属性

    WPF元素也可以从父元素中获得特性.例如,如果Button元素为了Canvas元素中,按钮的Top和Lef属性把父元素的名称作为前缀.这种属性成为附带属性: <Canvas> <Bu ...

  9. JavaScript 组件化开发之路(一)

    *:first-child{margin-top: 0 !important}.markdown-body>*:last-child{margin-bottom: 0 !important}.m ...

  10. PAT乙级真题1001. 害死人不偿命的(3n+1)猜想 (15)(解题)

    卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数 ...