A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

城市车辆定位的多位置联合粒子滤波方法

Shuxia Gu, Zhiyu Xiang*, Yi Zhang and Qi Qian

张宁

Abstract—Robust localization is a prerequisite for autonomous vehicles. Traditional visual localization methods like visual odometry suffer error accumulation on long range navigation. In this paper, a flexible road map based probabilistic filtering method is proposed to tackle this problem. To effectively match the ego-trajectory to various curving roads in map, a new representation based on anchor point (AP) which captures the main curving points on the trajectory is presented. Based on APs of the map and trajectory, a flexible Multi-Position Joint Particle Filtering (MPJPF) framework is proposed to correct the position error. The method features the capability of adaptively estimating a series of APs jointly and only updates the estimation at situations with low uncertainty.It explicitly avoids the drawbacks of obliging to determine the current position at large uncertain situations such as dense parallel road branches. The experiments carried out on KITTI benchmark demonstrate our success.

鲁棒的定位是自动驾驶汽车的先决条件。视觉里程计等传统视觉定位方法在远程导航中会产生误差累积。本文提出了一种基于概率滤波方法的灵敏路线图来解决这一问题。 为了有效地将自我轨迹与地图中的各种弯曲道路相匹配,呈现了基于锚点(AP)的新表示,其捕获轨迹上的主要弯曲点。基于地图和轨迹的AP,提出了一种灵活的多位置联合粒子滤波(MPJPF)框架来校正位置误差。该方法具有联合自适应地估计一系列AP的能力,并且仅在具有低不确定性的情况下更新估计。它明确地避免了在大的不确定情况下(例如密集的平行道路分支)必须确定当前位置的缺点。 在KITTI基准测试中进行的实验证明了我们的成功。
本文提出了一种新的多位置联合滤波方法,以减少航位推算定位方法(如视觉里程计)产生的累积漂移误差。为了在参考地图中稳健地定位弯曲轨迹,首先提出了一种有效的锚点(AP)呈现方式。然后给出了整个MPJPF算法。 它能够自适应地更新AP位置,并具有在最不确定条件下同时估计几个AP的能力。利用粒子滤波的机制,实现了能够很好地平衡局部VO和全局参考地图的最佳位置结果。此外,它仅需要输入基本VO和简单的道路水平参考图,这使得它对于很多配备有低成本传感器和有限计算能力的智能车辆流行。实验结果表明,无论轨迹多长或弯曲,我们的方法都能有效地减少定位误差。它提供了一种新的有效方法,可以在没有GPS或其他类型的绝对位置传感器的帮助下进行长时间的车辆定位。

泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area的更多相关文章

  1. 泡泡一分钟: A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem

    张宁 A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem "链接:https ...

  2. 泡泡一分钟:SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes

    张宁    SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes    "链接:https://pan.ba ...

  3. 泡泡一分钟:Context-Aware Modelling for Augmented Reality Display Behaviour

    张宁 Context-Aware Modelling for Augmented Reality Display Behaviour链接:https://pan.baidu.com/s/1RpX6kt ...

  4. 泡泡一分钟:Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping

    张宁  Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping链接:https://pan.ba ...

  5. 泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis

    http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf Aided Inertial Navigation: Unified Feature R ...

  6. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  7. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  8. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  9. 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators

    Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...

随机推荐

  1. 用 JAAS 和 JSSE 实现 Java 安全性

    JAAS 和 JSSE 概述 JAAS 提供了一种灵活的.说明性的机制,用于对用户进行认证并验证他们访问安全资源的能力.JSSE 定义了通过安全套接字层(SSL)进行安全 Web 通信的一种全 Jav ...

  2. HDU 4666 Hyperspace (最远曼哈顿距离)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  3. 安装SQL Server For Linux(Install SQL Server)

    SQL Server on Ubuntu——Ubuntu上的SQL Server(全截图) 1.      安装SQL Server 官网安装指南:https://docs.microsoft.com ...

  4. 12C -- ORA-12850: 无法在所有指定实例上分配从属进程: 需要 2, 已分配 1

    使用客户端连接到oracle 12.2.0.1 rac数据库,报以下错误信息: ORA-12850: 无法在所有指定实例上分配从属进程: 需要 2, 已分配 1 因为没有mos账号,只好谷歌一下了.找 ...

  5. python开发-与其他语言的比较

    1.关于函数 1)不需要指定返回类型,不需要指定是否有返回值,每个函数都有返回值,没有的话,就返回None 2)参数也可以不指定类型,可以有默认参数,但是必须放到最后,调用的时候指定参数的值,和顺序无 ...

  6. 在layui layer 弹出层中加载 layui table

    layui.use('table', function(){ var table = layui.table; layer.open({ type : 1, area : [ "600px& ...

  7. AI金融知识自学偏量化方向-了解不同类型的机器学习2

    有监督学习 vs 无监督学习 迭代和评估 偏差方差权衡 结合有监督学习和无监督学习(半监督学习)

  8. [Understanding] Compressive Sensing and Deep Model

    低维模型与深度模型的殊途同归 有助理解核心,陌生概念需要加强理解. 对于做机器学习,和做图像视觉的研究者来说,过去的十年是非常激动人心的十年.以我个人来讲,非常有幸接触了两件事情: 第一件是压缩感知( ...

  9. [PyData] 03 - Data Representation

    Ref: http://blog.csdn.net/u013534498/article/details/51399035 如何在Python中实现这五类强大的概率分布 考虑下在mgrid上画二维概率 ...

  10. [Laravel] 09 - Functional models

    Laravel框架下的若干常用功能实现. 文件上传 邮件发送 缓存使用 错误日志 队列应用 文件上传 一.配置文件 功能 配置 [config/filesystems.php] 'disks' =&g ...